AFFECTATION INDEX AND SEVERITY DEGREE BY COVID-19 IN CHEST X-RAY IMAGES USING ARTIFICIAL INTELLIGENCE
Main Article Content
Abstract
The Covid-19 pandemic has caused the congestion of intensive therapies making it impossible for each to have a full-time radiology service. An indicator is necessary to allow intensivists to evaluate the evolution of patients in advanced state of the disease depending on the degree of involvement of their lungs and their severity in chest X-ray images (CXR). We propose an algorithm to grade the affectation of lungs in CXR images in patients diagnosed with COVID-19 in advanced state of the disease. The algorithm combines the assessment of image quality, digital image processing and deep learning for segmentation of the lung tissues and their classification. The proposed segmentation method is capable of dealing with the problem of diffuse lung borders in CXR images of patients with COVID-19 severe or critical. The calculation of the affectation index (IAF) consists of the classification of the segmented image by establishing the relationship between the number of pixels of each class. The IAF index of lung affectation in CXR images and the algorithm for its calculation. A correlation was established between the IAF and the international classification of the degree of severity established by radiologists
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.