A SECURE ALGORITHM FOR DATA DEDUPLICATION IN CLOUD STORAGE SYSTEM
Main Article Content
Abstract
Data redundancy is a significant issue that wastes plenty of storage space in the cloud-fog storage integrated environments. Most of the current techniques, which mainly center around the static scenes, for example, the backup and archive systems, are not appropriate because of the dynamic nature of data in the cloud or integrated cloud environments. This problem can be effectively reduced and successfully managed by data deduplication techniques, eliminating duplicate data in cloud storage systems. Implementation of data deduplication (DD) over encrypted data is always a significant challenge in integrated cloud-fog storage and computing environment to optimize the storage efficiently in a highly secured manner. This paper develops a new method using AES, Blowfish and RSA algorithms over the cloud and fog environment to construct secure deduplication systems. The proposed method focuses on the two most important goals of such systems. On one side, the redundancy of data needs to be reduced to its minimum, and on the other hand, a robust encryption approach must be developed to ensure the security of the data. Our approach found the advantage of the RSA encryption algorithm over the existing Attribute-based encryption. Which makes the advantage of symmetric key encryption and performed the fast process over the existing work scenario to prove the efficiency of our algorithm? Our work is computed using the parameter computation time which is efficient than the existing attribute-based encryption algorithm.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.