OPTICAL HANDWRITTEN DEVNAGARI CHARACTER RECOGNITION USING ARTIFICIAL NEURAL NETWORK APPROACH
Keywords:
Classification, 64 dimensional features, Shadow features, feed forward neural network;Abstract
Character recognitions play a wide role in the fast moving world with the growing technology, by providing more scope to perform research in OCR techniques.In the field of pattern recognitionDevnagarihandwrittencharacterrecognition isone of the challenging research area. Character recognition is defined as electronic translation of scanned images of handwritten or printed text into a machine encoded text. In this paper proposed an off line handwritten Devnagari character recognition technique with the use of feed forward neuralnetwork.For training the neural networka handwritten Devnagaricharacter which is resized into 20x30 pixels is used. The same character is then given to the neural network as input with different set of neurons in hidden layer after the training process, and their recognition accuracy rate is calculated and compared for different Devnagari characters. Good recognition accuracy rates has been given by the proposed system comparable to that of other handwritten character recognition systems.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.