A SURVEY ON EXPLAINABLE AI: TECHNIQUES AND CHALLENGES
DOI:
https://doi.org/10.26662/ijiert.v7i3.pp57-66Keywords:
Explainable AI, interpretability, transparency, post-hoc methods, intrinsic methods, machine learning, neural networks, AI ethics, decision-making, XAI challenges.Abstract
Explainable Artificial Intelligence (XAI) is a rapidly evolving field aimed at making AI systems more interpretable and transparent to human users. As AI technologies become increasingly integrated into critical sectors such as healthcare, finance, and autonomous systems, the need for explanations behind AI decisions has grown significantly. This survey provides a comprehensive review of XAI techniques, categorizing them into post-hoc and intrinsic methods, and examines their application in various domains. Additionally, the paper explores the major challenges in achieving explainability, including balancing accuracy with interpretability, scalability, and the trade-off between transparency and complexity. The survey concludes with a discussion on the future directions of XAI, emphasizing the importance of interdisciplinary approaches to developing robust and interpretable AI systems.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Innovations in Engineering Research and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.