MEDICAL INSURANCE PREMIUM PREDICTION WITH MACHINE LEARNING
DOI:
https://doi.org/10.26662/ijiert.v11i5.pp5-11Keywords:
Medical insurances, feature importance, underwriting, premium prediction, machine learning, predictive modelling, and data-driven decision-making.Abstract
A machine learning method for predicting health insurance rates is presented in this article. With healthcare expenditures becoming more complex, it is critical for insurance companies and policyholders to accurately estimate insurance prices. Utilizing a dataset that included medical history, demographic data, and other pertinent variables, a variety of machine learning techniques, such as ensemble methods and regression, were used to create prediction models. R-Squared and mean absolute error were two measures used to assess these models' performance. According to the developed models' results, insurance premiums can be predicted with accuracy, offering useful information for insurance counteragents. This approach has the potential to optimize pricing strategies, enhance risk assessment, and improve decision-making in the healthcare insurance sector. Machine Learning-Based Prediction of Medical Insurance Premiums Make predictions about health insurance companies based on personal traits. A dataset of policyholder attributes (such as age, gender, BMI, number of children, smoking behaviors, and geography) was gathered and preprocessed .Divide the data into sets for testing and training. Create and train a model for an artificial neural network with TensorFlow and Karas. R-squared metrics and mean R-squared error were used to assess the performance of the model. created a high R-Squared predictive model that was accurate. determined the main determinants of insurance rates. Machine learning has shown promise in estimating healthcare costs. This experiment demonstrates how well machine learning predicts medical insurance rates. Insurance companies may offer more individualized insurance plans, expedite the underwriting process, and help customers make well-informed decisions about their healthcare coverage by creating these predictive models. The created model can help policyholders make educated judgments and insurance companies establish proper prices. In the long run, our research helps the insurance industry enhance data-driven techniques, which benefits insurers as well as insured individuals in general.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Innovations in Engineering Research and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.