USE OF RESPONSE SURFACE METHODOLOGY (RSM) IN OPTIMISATION OF BIODIESEL PRODUCTION FROM COW TALLOW
Main Article Content
Abstract
In this study, beef tallow, waste from slaughterhouses was used as a feedstock for the production of biodiesel due to its high yield capacity, availability, and low cost. Sodium hydroxide and methanol were used as catalyst and solvent respectively. Characterization of oil and biodiesel samples were carried out using the Association of analytical chemist (AOAC) and American society of testing and materials (ASTM) respectively. Other characterization methods used are Fourier transform infrared spectroscopy (FTIR) and gas chromatographymass spectrophotometry (GC-MS) techniques. FTIR was carried out to characterize (identify the constituent elements) of both the feedstocks and their methyl esters. The fatty acid profile of the raw feedstocks and the produced methyl esters were obtained using the gas chromatograph to ascertain the % concentration of the different fatty acids. The physicochemical properties of the oils and biodiesel were also determined and compared with standards. Optimization of the processes was carried out using response surface methodology (RSM) under the platform of Design Expert 7.0.0 which uses statistical regression models. The optimized yield from transesterification of cow tallow using RSM was 83.82%, obtained with optimum operating parameters of Temperature (54.3oC), Time (51.65 mins), Catalyst concentration (1.82 wt%), Methanol/oil ratio (4.08 mol/mol) and stirring speed (302 rpm). This work thus not only confirms cow tallow as a viable feedstock for the production of biodiesel but also proves that a high enough yield of cow tallow biodiesel can be obtained at feasible reaction conditions. This study concluded that the use of response surface methodology proves to be a viable optimization technique albeit with its limitations in the transesterification process.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.