DEGENERATIVE SPINE DETECTION
DOI:
https://doi.org/10.17605/OSF.IO/D8F3AKeywords:
Convolutional Neural Network, Deep Learning, Transfer LearningAbstract
Spinal Misalignment is a chronic disease that is widespread across the world. It causes different diseases such as Stenosis, Scoliosis, Osteoporotic Fractures, Thoracolumbar fractures, Disc degeneration, etc. The diagnosis of such disease is generally done by analyzing the Magnetic Resonance Imaging (MRI) scan of the lumbar spine region. MRI analysis is done by well experienced medical professionals (radiologists and orthopedists). The flip side to this inspection is that it is time consuming and may be subjected to a lack of accuracy. The manual segmentation of MRI scans from a large number of scan images is a tedious and time - consuming process. Thus, there is a need for automatic segmentation and analysis of spine MRI scans to improve clinical outputs and the accuracy of spinal measurements. In recent years, the rise of deep learning technologies is making a revolution in medical systems. It is capable to examine a big amount of data thus yielding a better accuracy. So, deep learning approaches can be efficiently used for the automatic segmentation of MRI scans. For Disc degeneration detection we trained two models namely normal CNN Model and Densenet121 model. Out of these two models the Densenet121 model performed the best against our standards. It achieved training Accuracy of 99.75% , validation accuracy of 93.74% , testing Accuracy of 92.74% and hence was chosen as the final model for Disc degeneration detection.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0 DEED).
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Rights of Authors
Authors retain the following rights:
1. Copyright and other proprietary rights relating to the article, such as patent rights,
2. the right to use the substance of the article in future works, including lectures and books,
3. the right to reproduce the article for own purposes, provided the copies are not offered for sale,
4. the right to self-archive the article.