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ABSTRACT 

In the article, using the method of small perturbations, mathematical models of hydrodynamic stability for 

single-phase flows are obtained. The spectral-grid method is used to approximate the stability equations. It 

combines the high accuracy of the spectral method of nonuniform grids and allows one to determine all the 

eigenvalues of the problem under consideration at once. In the spectral-grid method, the interval of 

integration with respect to the spatial variable is divided into a grid; in the grid elements, the approximate 

solution is approximated using a linear combination of a different number of series in Chebyshev 

polynomials of the first kind. Among orthogonal polynomials, only Chebyshev polynomials have the 

minimax property, i.e. for these polynomials, the maximum deviation from the desired solution is minimal. 

In addition, there are convenient recurrence formulas for the computational application of Chebyshev 

polynomials. Using these formulas, you can easily calculate the values of polynomials and their derivatives 

of the desired order. 
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INTRODUCTION 

In papers [1-6] the study of methods for finding the eigenvalue which is the coefficients of the Orr-

Sommerfeld equation. In [7], a study of one effective method for solving the Orr-Sommerfeld equation. And 

in work [8-11] mathematical models of the problem of hydrodynamic stability of single-phase flows were 

created. 

The spectral-grid method (SGM) is a new effective mathematical apparatus for numerical modeling of the 

hydrodynamic stability problem. It combines the high accuracy of spectral methods with the economy of the 

nonuniform mesh method and allows one to determine all the eigenvalues of the problem at once. In this 

article, an effective research method for hydrodynamic stability has been found. 

In this work, to overcome the above difficulties, the spectral-grid method is used [12-13]. Depending on the 

type of initial data or the expected form of the solution, a grid is introduced in the integration interval. At the 

internal nodes of the grid, the requirement is imposed on the continuity of the solution and its derivatives up 

to order 1m , where m the order of the highest derivative of the differential equation is. At the boundary 

grid nodes, the corresponding boundary conditions for the problem under consideration are set. An 

approximate solution on grid elements is represented in the form of finite series in Chebyshev polynomials 
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of the first kind. The resulting system of equations with the help of linear non-degenerate transformations is 

reduced to two autonomous systems: a linear system of algebraic equations and a system (in the general 

case, nonlinear) of ordinary differential equations. To solve the first system, standard methods are used, and 

to solve the second, an explicit algorithm developed by. 

Therefore, the use of the spectral-grid method makes it possible, firstly, to distribute the Chebyshev 

polynomials over the elements, taking into account the behavior of the solution gradient and, secondly, to 

lead to a significant decrease in the order of the matrices in the arising algebraic system. In this method, for 

a given number of grid elements N , to achieve the required accuracy of calculations, it is necessary to 

correctly position the grid nodes and select the number of polynomials jp  on the grid elements. These 

questions are closely related, because by bringing the grid nodes closer together, one can reduce the number 

of polynomials on the elements and vice versa. In practical calculations, it is more convenient to choose a 

uniform mesh, specifying a different number of polynomials jp  on each mesh element. Then the number of 

required polynomials depends on the relative value of the gradients of the solution on a particular element 

[14-16]. 

Mathematical models characterizing the viscous motion of a viscous incompressible fluid are described by 

the Navier-Stokes equation [6-8]: 
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where ,u  - longitudinal and transverse components of velocity, p  - pressure,  /= ULRe  - Reynolds 

numbers,   - density,   - fluid viscosity, U  and L  - characteristic scales of velocity and length, 

respectively. 

 

MAIN PART 
To study the stability of the solution to system (1), we represent, as usual, in the form of a superposition of 

the main laminar flow  yU  and a small perturbation:  

    ),,,(~=,, tyxuyUtyxu   

  ),,,(
~

=,, tyxtyx        (2) 
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We write system (1) taking into account (2) and, leaving in the obtained equations only terms of the first 

order of smallness in perturbations, we have 

,~1
=

~~~~

2

2


































u

dy

Ud

Rex

p

x

P

dy

dU

x

u
U

t

u
  

,
~1

=
~~~
























Rey

p

y

P

x
U

t
      (3) 

.//=0,=

~~
2222 yx

yx

u









 
 

Considering that the main flow itself satisfies the Navier-Stokes equations, i.e. 
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then system (3) takes the form 
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We introduce the stream function for the disturbing motion in the form 

  ,)(=,, )( tkxieytyx       (6) 

where ir iy  =)(  is the complex amplitude of perturbations, k  is a real value associated with the 

length of the 

   -wave of perturbation by the relation k/2=  . Value   is complex, ir i = , where r  is the 

angular frequency of an individual vibration, and i  is the rise factor, i.e. a value that makes it possible to 

judge whether the oscillation increases or dies. If 0<i , then the oscillation decays and the laminar flow is 

stable, but if 0>i , then instability takes place. In addition to the quantities k  and  , it is advisable to 

also introduce their ratio ir ik  =/= . The quantity r  is the propagation velocity of the waves in 

direction x  (phase velocity), and i  is again a quantity that allows one to judge about the decay or increase 

of the oscillation.  

The amplitude )(y  of the disturbing motion is taken to depend only on variable y , because the main flow 

also depends only on y . For stream function (6) we have  
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thus, the continuity equation (5) is integrated, and from system (4) we obtain the eigenvalue problem for the 

Orr - Sommerfeld equation [1-6]: 
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with uniform boundary conditions, which means impermeability and adhesion requirements. Here 

2
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
 is the differential operator, )(U  is the velocity profile of the main flow,   is the coordinate 

directed across the main flow, k  is the wave number, Re  is the Reynolds number, )(  are the amplitudes 

of the stream function for perturbations, ir i =  are the eigenvalues of the problem, where r  is the 

phase the speed of the wave disturbance, i  is the growth factor. If 0i , then the flow is unstable, if 

0i , then it is stable. If 0i , then the oscillations are neutral stable.  

SGM to simulate the equation of stability for single-phase hydrodynamic systems described by the 

eigenvalue problem (7) - (8). We divide the integration interval  l ,0  into a grid and get N  different 

elements: 

].,[],...,,[],...,,[],,[ 112110 NNjj    

Differential equation (7) on each of these elements takes the form 

      0,='2
jjjj UDUikReD 


  Nj 1,2,...,=   (9) 
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Boundary conditions (8) are written at points 0  and N : 
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At the internal nodes of the grid, we require the continuity of the solution to equation (9) and its derivatives 

up to the third order: 
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where t  indicates the order of the derivative. 

To represent the solution of equations (9) - (11) in the form of a series in Chebyshev polynomials of the first 

kind, each element ],[ 1jj   is mapped to the interval 1,1][ . After this transformation, equations (9) take 

the form 
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1=  jjjl   indicates the length of the j  th mesh element. 

We seek an approximate solution to problem (12) - (13) on each of the grid elements in the form  
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where  yTn  are the Chebyshev polynomials of the first kind, 
j

l
y  are their nodes, and jp  is the number of 

polynomials used to approximate the solution at the j th element. 

Substituting series (14) into equation (12), we require that the left side of (12) on each of the grid elements 

be orthogonal to the first 4jp  Chebyshev polynomials: 
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))(1()(=),( dot product on segment 1,1][ . In addition, we also require that the 

series in Chebyshev polynomials (14) exactly satisfy the boundary and continuity conditions (13). Taking 
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into account the following properties of Chebyshev polynomials n
nT 1)(=1)(   and 22' 1)(=1)( nT n

n
 , 

these conditions are written in the form: 
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Thus, to determine 1)(= jpNm  unknowns j
j

n pna 0,1,2,...,=)( ; Nj 1,2,3...,= , we have 1)(= jpNm  

equations. These equations are 3)( jpN  orthogonality equations (15), 1)4( N  continuity conditions, and 

four boundary conditions from (16). The resulting system can be conveniently written in matrix form: 

0,=)( XBA        (17) 

where complex matrices A  and B  have a beam-diagonal structure of a special type, and vector X  contains 

coefficients )( j

na  in expansion (14), i.e.  
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A characteristic feature of system (17) is that matrix B  is degenerate (since conditions (16) do not depend 

on  ) and contains N4  zero rows, where N  is the number of grid elements.  

 

RESULTS AND DISCUSSION 

The construction of an algebraic transformation for matrix stability equations (17) is presented in the fourth 

section. This system, using a nondegenerate linear transformation Q , is reduced to the form  

   0.=1xQBQAQ       (18) 

After applying transformation Q , the number of rows and columns of complex matrices A  and B  is 

reduced by N4 , where N  is the number of elements. The ratio of the total number of equations m  to the 

number of the remaining Nm 4=  equations is  

Nm

m
q

4
=


        (19) 

Thus, as a result of dividing the integration interval into elements, the dimension of each complex matrices 

(real and imaginary parts) A  and B  in the original algebraic system decreases by 2q  times. The reduction 

in dimension is especially noticeable with a small number of polynomials at each of the elements. Indeed, 

the number of polynomials on the j th element is 1jp   Nj ,...,3,2,1 . Then the total number of 

polynomials and, accordingly, algebraic equations is 1)(=

1=

 j

N

j

pm . Note that jp  should not be less than 

the order of the highest derivative of the differential equation, i.e. 4jp . For 4jp , for example, for all 
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,j ,5Nm   5q . This means that the number of equations in the system is reduced by 5 times, and the 

dimensions of each complex matrices A  and B  by 25 times. 

From the remaining equations, an algebraic system of significantly lower dimension is obtained: 

0,=)(T YW       (20) 
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where W  is generally a non-degenerate square matrix.  

Multiplying (20) on the left by matrix 1W , we obtain  

  .=0,= 1 TWDYED     (21) 

The eigenvalues of system (21) can be found by standard methods. In this work, they are determined using 

the QR  - algorithm. 

To solve a system of the form (21), one step of the QR  -algorithm requires 3)
3

20
(= nZ  arithmetic 

operations. Table 1 compares spectral method SM and SGM by the number of arithmetic operations Z .  

Table 1. 
 

m  

SM SGM 

Z  N  Z  

5 6 1 6 

10 1440 2 53 

20 27306 4 426 

30 117173 6 1440 

40 311040 8 3414 

50 648906 10 6666 

60 1170773 12 27306 

70 1916640 14 70986 

80 2926507 16 146346 

90 4240373 18 262026 

100 5898240 20 426666 

 

Efficiency SGM, given in table. 1. The most clearly illustrated in fig. 1, where Z  denotes the number of 

arithmetic operations.  

 
 

Fig. 1 Curve 1 - SGM, curve 2 - SM. 

However, the high accuracy of the SGM is maintained. 
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CONCLUSIONS 

The spectral-grid method and the spectral method are compared by the number of arithmetic ones when 

solving the standard eigenvalue problem with a complex matrix. It is shown that the spectral-grid method is 

economical and has high accuracy in solving the problem of hydrodynamic stability. 

 

REFERENCES 

1) Krylov A.A., Malykhina I.D. Solution of the eigenvalue problem for the Orr-Sommerfeld equation by 

the difference method // Vychisl. Methods and programming. - 1968. no. 11, pp. 44-54.  

2) Zharilkasinov A., Liseikin V.D., Skobelev B.Yu. And Yanenko N.N. Application of a non-uniform grid 

for the numerical solution of the Orr-Somerfeld problem. // Numerical methods of continuum 

mechanics. - 1983. - T. 14. - No. 5. - S. 45-54.  

3) Zharilkasinov A., Skobelev B.Yu. and Yanenko N.N. Effective non-uniform mesh for the Orr-

Sommerfeld equation and Poiseuille flow spectrum. Novosibirsk, 1984. p. 35. (Preprint / RAS. Siberian 

Branch. Institute of Theoretical and Applied Mechanics. No. 21.  

4) Sleptsov A.G. Projection-grid methods for solving Orr-Sommerfeld problems. // Numerical methods of 

continuum mechanics. - 1983. - T. 14. - No. 5. - S. 111-126. 

5) Zheltukhin N.A. A determinant method for solving the Orr-Sommerfeld equation. // Aerogasdynamics: 

Proceedings of Sib. Conf. Aerodynamics July-August. - 1973.S. 70-73. 

6) Orszag, S.A. (1971), “Accurate solution of the Orr-Sommerfeld stability equation”, Journal fluid mech, 

Vol 4 (50). pp. 689-701. 

7)  Narmuradov Ch. B. On an effective method for solving the Orr – Sommerfeld equation // Mathematical 

modeling. - 2005. - T. 17. - No. 9. - S. 35-42. 

8) Abutaliev FB, Narmuradov Ch. B. Mathematical modeling of the problem of hydrodynamic stability // 

T.: Fan va texnologiya. - 2011. 

9) Narmuradov Ch. B., Mengliev Sh. A., Gulomkodirov KA Mathematical models of the hydrodynamic 

stability problem for single-phase flows // Problems of computational and applied mathematics. - 2017. 

- No. 1. - S. 41-46. 

10) Narmuradov Ch. B., Mengliev Sh. A. Trubadagi suyuқliklar ҳarakatini mathematician modelashtirish // 

Isoblash va amali mathematica muammolari. - 2018. - No. 2. - P. 14. 

11)  Gordin, V.A. (2016), Differential and difference equations, Higher School of Economics, Moscow, 517 

p. 

12) Narmuradov Ch. B., Gulomkodirov KA Mathematical modeling of the Navier-Stokes equations in the 

vortex system and stream function // Problems of computational and applied mathematics. - 2017. - No. 

3. - S. 29-32. 

13) Normurodov C. B., Toyirov A. X., Yuldashev S. M. Numerical modeling of nonlinear wave systems by 

the spectral-grid method //International Scientific Journal Theoretical & Applied Science, Philadelphia, 

USA. – 2020. – Т. 83. – №. 3. – С. 43-54.  

14) Narmuradov C. B. et al. Mathematical modeling of movement of a viscous incompressible liquid by the 

spectral-grid method //Theoretical & Applied Science. – 2020. – №. 4. – С. 252-260. 

15) Toyirov A. K., Yuldashev S. M., Abdullayev B. P. Numerical modeling the equations of heat 

conductivity and burgers by the spectral-grid method //Наука 2020. Теория и практика. – 2020. – С. 

30-31. 

16)  Begaliyevich N. C., Khasanovich T. A. Spectral-grid method for solving evolution problems with high 

gradients //EPRA International Journal of Multidisciplinary Research (IJMR). – Т. 67. 

 


