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ABSTRACT 

Using re-programmable logic components along with HDL languages encompasses wider and wider areas of 

practical applications, becoming a standard of complex digital system design. One of the basic tasks, which are 

to be carried out in the process of design, is obtaining the highest efficiency of the solution under design. 

Thereby designers are still looking for methods making it possible to speed up design processing time. 

Pipelining mechanism is one of these methods. It helps to speed up some dedicated operations. In the early 

stage of design, a given unit described by high level language, is divided into some independent parts, which are 

synchronized with each other via intermediate registers and synchronization signal (pipelining mechanism). 8-

stage pipelining is the key implementation technique used to make fast CPUs. It is an optimization technique 

used to speed up instruction execution. Throughput of an instruction pipeline is increased while latency is 

decreased for each instruction execution. This new 8-stage pipelining includes two instruction fetch, one 

instruction decode, two execution, two memory and one write back stages. It describes advantages of both 

speed and suitability for synthesizable RISC design. 

 

INTRODUCTION 

Pipelining is an implementation technique whereby multiple instructions are overlapped in execution; it takes 

advantage of parallelism that exists among the actions needed to execute an instruction. Today, pipelining is the 

key implementation technique used to make fast CPUs. A pipeline is like an assembly line. In an automobile 

assembly line, there are many steps, each contributing something to the construction of the car. Each step 

operates in parallel with the other steps, though on a different car. In a computer pipeline, each step in the 

pipeline completes a part of an instruction. Like the assembly line, different steps are completing different parts 

of different instructions in parallel. Each of these steps is called a pipe stage or a pipe segment. The stages are 

connected one to the next to form a pipe instructions enter at one end, progress through the stages, and exit at 

the other end, just as cars would in an assembly line. 

 

In an automobile assembly line, throughput is defined as the number of cars per hour and is determined by how 

often a completed car exits the assembly line. Likewise, the throughput of an instruction pipeline is determined 

by how often an instruction exits the pipeline. Because the pipe stages are hooked together, all the stages must 

be ready to proceed at the same time, just as we would require in an assembly line. The time required between 

moving an instruction one step down the pipeline is a processor cycle. Because all stages proceed at the same 

time, the length of a processor cycle is determined by the time required for the slowest pipe stage, just as in an 

auto assembly line, the longest step would determine the time between advancing the line. In a computer, this 

processor cycle is usually one clock cycle (sometimes it is two, rarely more). 

 

OBJECTIVE 
 
Increasing the throughput and decreasing the latency per instruction. 

The pipeline designer’s goal is to balance the length of each pipeline stage, just as the designer of the assembly 

line tries to balance the time for each step in the process. If the stages are perfectly balanced, then the time per 

instruction on the pipelined processor assuming ideal conditions is equal to 
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Under these conditions, the speedup from pipelining equals the number of pipe stages, just as an assembly line 

with n stages can ideally produce cars n times as fast. Usually, however, the stages will not be perfectly 

balanced; furthermore, pipelining does involve some overhead. Thus, the time per instruction on the pipelined 

processor will not have its minimum possible value, yet it can be close. Pipelining yields a reduction in the 

average execution time per instruction. Depending on what you consider as the base line, the reduction can be 

viewed as decreasing the number of clock Cycles Per Instruction (CPI), as decreasing the clock cycle time, or as 

a combination. If the starting point is a processor that takes multiple clock cycles per instruction, then pipelining 

is usually viewed as reducing the CPI. This is the primary view we will take. If the starting point is a processor 

that takes one (long) clock cycle per instruction, then pipelining decreases the clock cycle time. 

 

The speed of execution of programs is influenced by many factors. One way to improve performance is to use 

faster circuit technology to build the processor and the main memory. Another possibility is to arrange the 

hardware so that more than one operation can be performed at the same time. In this way, the number of 

operations performed per second is increased even though the elapsed time needed to perform any one operation 

is not changed. 

 

SCOPE OF WORK 

 
Two real-time applications of pipelining technology are, graphics hardware for processing pixels is extremely 

latency tolerant not unusual to find pipelines that have 10’s of stages
[1]

. Graphics pipelines are never flushed, 

high clock rate is extremely important because of large number of pixels (> 1 Million) that have to be supplied 

every screen, at >30 updates per second. Microprocessor instruction pipelines are not very latency tolerant, most 

CPU pipelines are only about 5-10 stages. Works and researches on pipelining always aim to increase 

throughput and decrease latency. 

 

 

LITERATURE SURVEY 

 
Pipelining increases the number of simultaneously executing instructions and the rate at which instructions are 

started and completed. Pipelining does not reduce the time it takes to complete an individual instruction, also 

called the latency. Pipelining improves instruction throughput rather than individual instruction execution time 

or latency [1].VHSIC hardware description language (VHDL) is defined, VHDL is a formal notation intended 

for use in all phases of the creation of electronic systems. Because it is both machine readable and human 

readable, it supports the development, verification, synthesis, and testing of hardware designs; the 

communication of hardware design data; and the maintenance, modification, and procurement of hardware. Its 

primary audiences are the implementers of tools supporting the language and the advanced users of the 

language [12], [13].Reduced Instruction Set Computer (RISC) architectures are the basis of modern high 

performance processors. They have a simplified instruction set, with register to register arithmetic instructions, 

memory can only be accessed by load and store instructions, usually with single and simple addressing mode; 

the instruction have the fixed size and few simple formats. RISC processors use pipelining and their instruction 

set allows tight control of their pipeline by the software. Optimizing compilers perform instruction scheduling 

so as to exploit the parallelism offered by the pipeline data path. RISC processors achieve high performance at 

low cost: the smaller and simpler circuits allow higher clock rates; the data path can use pipelining, and the 

compiler can exploit it. In addition, design time, design cost and silicon areas are reduced [14]. 

 

 

METHODOLOGY 

 
8-stage pipelining describes the basic operation of the CPU pipeline, which includes descriptions of the delay 

instructions. The CPU has an eight-stage instruction pipeline; each stage takes one PCycle (one cycle of 

PClock, which runs at twice the frequency of Master Clock). Thus, the execution of each instruction takes at 

least eight PCycles (four Master Clock cycles)
[16]

. An instruction can take longer for example, if the required 
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data is not in the cache, the data must be retrieved from main memory. Once the pipeline has been filled, eight 

instructions are executed simultaneously. Figure 1 shows the eight stages of the instruction pipeline; the next 

section describes the pipeline stages. 

 

 
 

Figure 1: Instruction Pipeline Stages. 

 

Pipeline stages 

 
This section describes each of the eight pipeline stages: 

IF - Instruction Fetch, First Half 

IS - Instruction Fetch, Second Half 

RF - Register Fetch 

EX – Execution 

DF - Data Fetch, First Half 

DS - Data Fetch, Second Half 

TC - Tag Check 

WB - Write Back 

 

IF - Instruction Fetch, First Half: During the IF stage, the following occurs: 

1. Branch logic selects an instruction address and the instruction cache fetch begins. 

2. The instruction translation look aside buffer (ITLB) begins the virtual-to-physical address translation. 
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IS - Instruction Fetch, Second Half: During the IS stage, the instruction cache fetch and the virtual-to-physical 

address translation are completed as shown in figure 2. 

RF - Register Fetch: During the RF stage, the following occurs: 

1. The instruction decoder (IDEC) decodes the instruction and checks for interlock conditions. 

2. The instruction cache tag is checked against the page frame number obtained from the ITLB. 

3. Any required operands are fetched from the register file. 

EX – Execution: During the EX stage, one of the following occurs: 

1. The arithmetic logic unit (ALU) performs the arithmetic or logical operation for register-to-register instructions. 

2. The ALU calculates the data virtual address for load and store instructions. 

3. The ALU determines whether the branch condition is true and calculates the virtual branch target address for 

branch instructions. 

 

 

Figure 2: Block diagram of eight stage pipelining. 

 

DF – Data Fetch, First Half: During the DF stage, one of the following occurs: 

1. The data cache fetches and the data virtual-to-physical translation begins for load and store instructions. 

2. The branch instruction address translation and translation look aside buffer (TLB) update begins for branch 

instructions
 [10]

. 

3. No operations are performed during the DF, DS, and TC stages for register-to-register instructions. 
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DS - Data Fetch, Second Half:  During the DS stage, one of the following occurs: 

The data cache fetch and data virtual-to-physical translation are completed for load and store instructions. The 

Shifter aligns data to its word or double word boundary. 

 

TC - Tag Check: For load and store instructions, the cache performs the tag check during the TC stage. The 

physical address from the TLB is checked against the cache tag to determine if there is a hit or a miss. 

 

WB - Write Back: For register-to-register instructions, the instruction result is written back to the register file 

during the WB stage. Branch instructions perform no operation during this stage. 

 

SOFTWARE REQUIREMENTS 

1. Xilinx version 9.2. 

2. VHDL language. 

 

CONCLUSION 

The work presented here describes a functional pipeline implementation design of a RISC processor designed 

using VHDL. Individual components of eight stage pipelining were designed using VHDL modules. The VHDL 

designs of the RISC processor were all simulated using Modelsim Simulator to ensure that the processors were 

functional, being simulated by the VHDL designs. The number of clock cycles per instructions is proportional 

to number of stages in pipelining. But the time required to execute an instruction is inversely proportional to 

number of pipelining stages. The goal was to increase the number of clock cycles and simultaneously decrease 

the execution time per instruction. As expected higher throughput and lower latency are successfully obtained. 

Higher the number of stages of pipelining complexity increases. 
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