
NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696
VOLUME 2, ISSUE 6 JUNE-2015

1 | P a g e

INCREASING THE THROUGHPUT USING EIGHT STAGE PIPELINING

Ms. Sobiya Ambreen

 Department of Electronics and Communication VVIET, Mysuru, India.

ABSTRACT

Using re-programmable logic components along with HDL languages encompasses wider and wider areas of

practical applications, becoming a standard of complex digital system design. One of the basic tasks, which are

to be carried out in the process of design, is obtaining the highest efficiency of the solution under design.

Thereby designers are still looking for methods making it possible to speed up design processing time.

Pipelining mechanism is one of these methods. It helps to speed up some dedicated operations. In the early

stage of design, a given unit described by high level language, is divided into some independent parts, which are

synchronized with each other via intermediate registers and synchronization signal (pipelining mechanism). 8-

stage pipelining is the key implementation technique used to make fast CPUs. It is an optimization technique

used to speed up instruction execution. Throughput of an instruction pipeline is increased while latency is

decreased for each instruction execution. This new 8-stage pipelining includes two instruction fetch, one

instruction decode, two execution, two memory and one write back stages. It describes advantages of both

speed and suitability for synthesizable RISC design.

INTRODUCTION

Pipelining is an implementation technique whereby multiple instructions are overlapped in execution; it takes

advantage of parallelism that exists among the actions needed to execute an instruction. Today, pipelining is the

key implementation technique used to make fast CPUs. A pipeline is like an assembly line. In an automobile

assembly line, there are many steps, each contributing something to the construction of the car. Each step

operates in parallel with the other steps, though on a different car. In a computer pipeline, each step in the

pipeline completes a part of an instruction. Like the assembly line, different steps are completing different parts

of different instructions in parallel. Each of these steps is called a pipe stage or a pipe segment. The stages are

connected one to the next to form a pipe instructions enter at one end, progress through the stages, and exit at

the other end, just as cars would in an assembly line.

In an automobile assembly line, throughput is defined as the number of cars per hour and is determined by how

often a completed car exits the assembly line. Likewise, the throughput of an instruction pipeline is determined

by how often an instruction exits the pipeline. Because the pipe stages are hooked together, all the stages must

be ready to proceed at the same time, just as we would require in an assembly line. The time required between

moving an instruction one step down the pipeline is a processor cycle. Because all stages proceed at the same

time, the length of a processor cycle is determined by the time required for the slowest pipe stage, just as in an

auto assembly line, the longest step would determine the time between advancing the line. In a computer, this

processor cycle is usually one clock cycle (sometimes it is two, rarely more).

OBJECTIVE

Increasing the throughput and decreasing the latency per instruction.

The pipeline designer’s goal is to balance the length of each pipeline stage, just as the designer of the assembly

line tries to balance the time for each step in the process. If the stages are perfectly balanced, then the time per

instruction on the pipelined processor assuming ideal conditions is equal to

NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696
VOLUME 2, ISSUE 6 JUNE-2015

2 | P a g e

Under these conditions, the speedup from pipelining equals the number of pipe stages, just as an assembly line

with n stages can ideally produce cars n times as fast. Usually, however, the stages will not be perfectly

balanced; furthermore, pipelining does involve some overhead. Thus, the time per instruction on the pipelined

processor will not have its minimum possible value, yet it can be close. Pipelining yields a reduction in the

average execution time per instruction. Depending on what you consider as the base line, the reduction can be

viewed as decreasing the number of clock Cycles Per Instruction (CPI), as decreasing the clock cycle time, or as

a combination. If the starting point is a processor that takes multiple clock cycles per instruction, then pipelining

is usually viewed as reducing the CPI. This is the primary view we will take. If the starting point is a processor

that takes one (long) clock cycle per instruction, then pipelining decreases the clock cycle time.

The speed of execution of programs is influenced by many factors. One way to improve performance is to use

faster circuit technology to build the processor and the main memory. Another possibility is to arrange the

hardware so that more than one operation can be performed at the same time. In this way, the number of

operations performed per second is increased even though the elapsed time needed to perform any one operation

is not changed.

SCOPE OF WORK

Two real-time applications of pipelining technology are, graphics hardware for processing pixels is extremely

latency tolerant not unusual to find pipelines that have 10’s of stages
[1]

. Graphics pipelines are never flushed,

high clock rate is extremely important because of large number of pixels (> 1 Million) that have to be supplied

every screen, at >30 updates per second. Microprocessor instruction pipelines are not very latency tolerant, most

CPU pipelines are only about 5-10 stages. Works and researches on pipelining always aim to increase

throughput and decrease latency.

LITERATURE SURVEY

Pipelining increases the number of simultaneously executing instructions and the rate at which instructions are

started and completed. Pipelining does not reduce the time it takes to complete an individual instruction, also

called the latency. Pipelining improves instruction throughput rather than individual instruction execution time

or latency [1].VHSIC hardware description language (VHDL) is defined, VHDL is a formal notation intended

for use in all phases of the creation of electronic systems. Because it is both machine readable and human

readable, it supports the development, verification, synthesis, and testing of hardware designs; the

communication of hardware design data; and the maintenance, modification, and procurement of hardware. Its

primary audiences are the implementers of tools supporting the language and the advanced users of the

language [12], [13].Reduced Instruction Set Computer (RISC) architectures are the basis of modern high

performance processors. They have a simplified instruction set, with register to register arithmetic instructions,

memory can only be accessed by load and store instructions, usually with single and simple addressing mode;

the instruction have the fixed size and few simple formats. RISC processors use pipelining and their instruction

set allows tight control of their pipeline by the software. Optimizing compilers perform instruction scheduling

so as to exploit the parallelism offered by the pipeline data path. RISC processors achieve high performance at

low cost: the smaller and simpler circuits allow higher clock rates; the data path can use pipelining, and the

compiler can exploit it. In addition, design time, design cost and silicon areas are reduced [14].

METHODOLOGY

8-stage pipelining describes the basic operation of the CPU pipeline, which includes descriptions of the delay

instructions. The CPU has an eight-stage instruction pipeline; each stage takes one PCycle (one cycle of

PClock, which runs at twice the frequency of Master Clock). Thus, the execution of each instruction takes at

least eight PCycles (four Master Clock cycles)
[16]

. An instruction can take longer for example, if the required

NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696
VOLUME 2, ISSUE 6 JUNE-2015

3 | P a g e

data is not in the cache, the data must be retrieved from main memory. Once the pipeline has been filled, eight

instructions are executed simultaneously. Figure 1 shows the eight stages of the instruction pipeline; the next

section describes the pipeline stages.

Figure 1: Instruction Pipeline Stages.

Pipeline stages

This section describes each of the eight pipeline stages:

IF - Instruction Fetch, First Half

IS - Instruction Fetch, Second Half

RF - Register Fetch

EX – Execution

DF - Data Fetch, First Half

DS - Data Fetch, Second Half

TC - Tag Check

WB - Write Back

IF - Instruction Fetch, First Half: During the IF stage, the following occurs:

1. Branch logic selects an instruction address and the instruction cache fetch begins.

2. The instruction translation look aside buffer (ITLB) begins the virtual-to-physical address translation.

NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696
VOLUME 2, ISSUE 6 JUNE-2015

4 | P a g e

IS - Instruction Fetch, Second Half: During the IS stage, the instruction cache fetch and the virtual-to-physical

address translation are completed as shown in figure 2.

RF - Register Fetch: During the RF stage, the following occurs:

1. The instruction decoder (IDEC) decodes the instruction and checks for interlock conditions.

2. The instruction cache tag is checked against the page frame number obtained from the ITLB.

3. Any required operands are fetched from the register file.

EX – Execution: During the EX stage, one of the following occurs:

1. The arithmetic logic unit (ALU) performs the arithmetic or logical operation for register-to-register instructions.

2. The ALU calculates the data virtual address for load and store instructions.

3. The ALU determines whether the branch condition is true and calculates the virtual branch target address for

branch instructions.

Figure 2: Block diagram of eight stage pipelining.

DF – Data Fetch, First Half: During the DF stage, one of the following occurs:

1. The data cache fetches and the data virtual-to-physical translation begins for load and store instructions.

2. The branch instruction address translation and translation look aside buffer (TLB) update begins for branch

instructions
 [10]

.

3. No operations are performed during the DF, DS, and TC stages for register-to-register instructions.

NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696
VOLUME 2, ISSUE 6 JUNE-2015

5 | P a g e

DS - Data Fetch, Second Half: During the DS stage, one of the following occurs:

The data cache fetch and data virtual-to-physical translation are completed for load and store instructions. The

Shifter aligns data to its word or double word boundary.

TC - Tag Check: For load and store instructions, the cache performs the tag check during the TC stage. The

physical address from the TLB is checked against the cache tag to determine if there is a hit or a miss.

WB - Write Back: For register-to-register instructions, the instruction result is written back to the register file

during the WB stage. Branch instructions perform no operation during this stage.

SOFTWARE REQUIREMENTS

1. Xilinx version 9.2.

2. VHDL language.

CONCLUSION

The work presented here describes a functional pipeline implementation design of a RISC processor designed

using VHDL. Individual components of eight stage pipelining were designed using VHDL modules. The VHDL

designs of the RISC processor were all simulated using Modelsim Simulator to ensure that the processors were

functional, being simulated by the VHDL designs. The number of clock cycles per instructions is proportional

to number of stages in pipelining. But the time required to execute an instruction is inversely proportional to

number of pipelining stages. The goal was to increase the number of clock cycles and simultaneously decrease

the execution time per instruction. As expected higher throughput and lower latency are successfully obtained.

Higher the number of stages of pipelining complexity increases.

REFERENCES

[1] Patterson, D. A., Hennessy, J. L., “Computer Organization and Design: The Hardware/Software Interface”,

2nd edition, Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[2] “Xilinx, XC4000 Series Field Programmable Gate Arrays Product Specification”, ver. 1.6, 1999.

[3] Altera, FLEX “10K Embedded Programmable Logic Device Family Data Sheet”, ver. 4.2., 2003.

[4] Altera, “MAX 7000 Programmable Logic Device Family Data Sheet”, ver. 6.02, 2002.

[5] MIPS Technologies, www.mips.com.

[6] SPIM, http://www.cs.wisc.edu/~larus/spim.html.

[7] Altera, “MAX+PLUS II Getting Started Manual”, ver. 6.0, 1995.

[8] Diab, H., Demashkieh, I., “A reconfigurable microprocessor teaching tool”, IEEE Proceedings A, vol. 137,

issue 5, September 1990.

[9] Gray, J., “Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip”, 2000.

[10] Altera, University Program UP2 Development Kit User Guide, ver. 3.0, 2003.

NOVATEUR PUBLICATIONS
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696
VOLUME 2, ISSUE 6 JUNE-2015

6 | P a g e

[11] MIPS Technologies, “MIPS32™ Architecture For Programmers Volume I: Introduction to the MIPS32™

Architecture”, rev. 2.0, 2003.

[12] Brown, S., Vranesic, Z.,”Fundamentals of Digital Logic with VHDL Design, McGraw-Hill Publishers”,

2002.

[13] IEEE. “IEEE Standard VHDL Language Reference Manual”. IEEE, New York, NY, 2002. IEEE Standard

1076-2002.

[14] Land. B, “Electrical Engineering 475 Microprocessor Architectures”,

http://instruct1.cit.cornell.edu/Courses/ee475/

[15] Takahashi, R., Ohiwa, H., “Situated Learning on FPGA for Superscalar Microprocessor Design

Education”, IEEE Proceedings of the 16
th

Symposium on Integrated Circuits and System Design, 2003.

[16] Altera, ByteBlaster MV Parallel Port Download Cable, ver. 3.3, 2002.

[17] Larus, J. R., “SPIM S20: A MIPS R2000 Simulator”, 1993.

