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Study of numerical algorithm used to solve the equation of motion for the planar flexural 

forced vibration of the cantilever beam

 

Department of Mechanical 

 Abstract 
 
This paper develops the numerical algorithm used to solve the equation of motion for the planar flexural forced 

vibration of the cantilever beam. The partial differential equation is first discretized in the spatial coordinate 

using Galerkin's weighted residual method. 

Newmark technique and a numerical algorithm is used to calculate the nonlinear response of the beam

 

Introduction  

 

Finite Element Model 
 

The equation of motion for the nonlinear planar flexural forced vibration of a cantilever beam was derived in the 

previous chapter. The equation of motion for the transverse displacement in the 

This equation can be written in the form

 

With the functions f1, f2, f3 , and F given by

 

 

f1 = (v'v'')',  f2 = 

∂ 
2 s s 

  

∫∫v'
2

∂t 
2

  l 0 
 

The functions f1, f2, and f3 originate from the curvature, inertial, and gravitational nonlinear effects, respectively. 

The function F is the force associated with the transverse displacement exciting the base of the beam. Equation 

(1.2) is a nonlinear integro-differential equation, 

approximate solution is sought by discretizing (1.2), first in the spatial coordinate using Galerkin's weighted 

residuals method, and then in the time domain using the Newmark technique. The 

coordinate is carried out in three steps: (1) mesh generation and function approximation, (2) element equation, 

and (3) assembly and implementation of boundary conditions. These steps are discussed in detail in the 

remaining of this section. The discretization in the time domain is the focus of section
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the numerical algorithm used to solve the equation of motion for the planar flexural forced 

vibration of the cantilever beam. The partial differential equation is first discretized in the spatial coordinate 

kin's weighted residual method. Then, the equation is discretized in the time doma

numerical algorithm is used to calculate the nonlinear response of the beam

The equation of motion for the nonlinear planar flexural forced vibration of a cantilever beam was derived in the 

previous chapter. The equation of motion for the transverse displacement in the y direction is given by

(1.1) 

the form 

 (1.2) 

given by 

2
 dsds ,  f3 = (s − l)v"+v',   F = ρAab cosΩt 

originate from the curvature, inertial, and gravitational nonlinear effects, respectively. 

is the force associated with the transverse displacement exciting the base of the beam. Equation 

differential equation, for which a closed form solution is not available. Therefore, an 

approximate solution is sought by discretizing (1.2), first in the spatial coordinate using Galerkin's weighted 

residuals method, and then in the time domain using the Newmark technique. The discretization in the spatial 

coordinate is carried out in three steps: (1) mesh generation and function approximation, (2) element equation, 

and (3) assembly and implementation of boundary conditions. These steps are discussed in detail in the 
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the numerical algorithm used to solve the equation of motion for the planar flexural forced 

vibration of the cantilever beam. The partial differential equation is first discretized in the spatial coordinate 

the equation is discretized in the time domain using the 

numerical algorithm is used to calculate the nonlinear response of the beam. 

The equation of motion for the nonlinear planar flexural forced vibration of a cantilever beam was derived in the 

direction is given by 

 

 
 

(1.3)
 

 

 
 

originate from the curvature, inertial, and gravitational nonlinear effects, respectively. 

is the force associated with the transverse displacement exciting the base of the beam. Equation 

for which a closed form solution is not available. Therefore, an 

approximate solution is sought by discretizing (1.2), first in the spatial coordinate using Galerkin's weighted 

discretization in the spatial 

coordinate is carried out in three steps: (1) mesh generation and function approximation, (2) element equation, 

and (3) assembly and implementation of boundary conditions. These steps are discussed in detail in the 
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Mesh Generation and Function Approximation
 
Figure 1 shows the cantilever beam divided into 
 

 

                 
                      

 
The typical cubic Hermite element (Figure 

1977), namely translation (qj) and slope (

as 

The shape functions ψj(s) are given by (Reddy, 1993).
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Mesh Generation and Function Approximation 

Figure 1 shows the cantilever beam divided into N cubic Hermite elements, each of length 

 
Figure 1: Cantilever beam divided into N elements 

                      Figure 2: Typical cubic Hermite beam element 

cubic Hermite element (Figure 2) has two nodes with two degrees of freedom per node (Zienkiewicz, 

) and slope (q'j ). The displacement of any point inside the element is approximated 

   (1.4) 

are given by (Reddy, 1993). 

         (1.5)
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cubic Hermite elements, each of length h. 

 

2) has two nodes with two degrees of freedom per node (Zienkiewicz, 

). The displacement of any point inside the element is approximated 

(1.5)
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The vector q
e
j  in (1.4) is the element nodal displacement vector.  For the remaining of

superscript e is dropped for the sake of simplicity

(1.2) is a piecewise cubic polynomial comprised of 
 
 

Element Equation 

In order to obtain the element equation, the approximated displacement in (

differential equation (1.2). When this is done, the left hand side is no longer equal to zero, but to a quantity 

called the residual. 

The weighted residual WR is defined using Galerkin's method. In Galerkin's method, the shape function 

used as the weighting function. The weighted residual is forced to be zero over the element. Therefore 

given by 
h 

WR = ∫ψi Rx ds 

0 
 

Multiplying both sides of (1.6) by the shape function 

Finally, several terms in equation (1.8) are integrated by parts to obtain the weak form of the element equation

This can be simplified to 
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.4) is the element nodal displacement vector.  For the remaining of

is dropped for the sake of simplicity. The numerical solution of the partial differential eq

.2) is a piecewise cubic polynomial comprised of the sum of the approximated displacement

 
 

In order to obtain the element equation, the approximated displacement in (1.4) is substituted into the partial 

.2). When this is done, the left hand side is no longer equal to zero, but to a quantity 

      (1.6)

is defined using Galerkin's method. In Galerkin's method, the shape function 

used as the weighting function. The weighted residual is forced to be zero over the element. Therefore 

 

ds = 0 (1.7)
 

.6) by the shape function ψi and integrating over the length of the element results in

.8) are integrated by parts to obtain the weak form of the element equation

(1.10) 
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.4) is the element nodal displacement vector.  For the remaining of this derivation, the 

The numerical solution of the partial differential equation in 

the sum of the approximated displacement 

.4) is substituted into the partial 

.2). When this is done, the left hand side is no longer equal to zero, but to a quantity Rx 

(1.6) 

is defined using Galerkin's method. In Galerkin's method, the shape function ψi is 

used as the weighting function. The weighted residual is forced to be zero over the element. Therefore WR is 

and integrating over the length of the element results in 

 (1.8) 

.8) are integrated by parts to obtain the weak form of the element equation  

  (1.9) 
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These matrices are the element mass, damping and stiffness matrices, respectively. Equation (

indicial notation. Therefore, repeated indices denote summation.

matrix naming convention used in the remaining of the chapter. Matrices in capital letters are linear matrices, 

while matrices in lower case letters are nonline

linear matrices, while the matrix cij
e
  is a nonlinear matri

and, Kij
e
 are given by (Reddy, 1993) 

where ρ, A, E, I, and h are the density, cross sectional area, Young’s modulus, area moment of inertia and length 

of the element, respectively. Equation (1

the nonlinear effects in (1.2). These matrices 

kcij
e
 = EI ∫hψ 'i ψ ' j  f1 ds 

  0  

The matrix kc
e

represents the curvature nonlinearity, while
 ij  

nonlinearity.   

The vectors F 
e
 and 

  i 

and are defined as  
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 (1.11)

matrices are the element mass, damping and stiffness matrices, respectively. Equation (

indicial notation. Therefore, repeated indices denote summation. At this point it is convenient to introduce the 

e remaining of the chapter. Matrices in capital letters are linear matrices, 

while matrices in lower case letters are nonlinear matrices. For instance, in (1.11) the matrices

is a nonlinear matrix For a cubic Hermite beam element the matrices 

         (1.12) 

 

      (1.13) 

 

are the density, cross sectional area, Young’s modulus, area moment of inertia and length 

1.10) has two additional stiffness matrices kcij
e
 , and 

.2). These matrices are given by 

ds ,  kiij
e
 = 

1
 ρA ∫hψ 'i ψ ' j  f2 ds 

  2 0   

represents the curvature nonlinearity, while ki
e

represents the inertia
   ij 

      

g e are the force and gravitational effect vectors, respectively
i      

      

h   h   
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(1.11) 

matrices are the element mass, damping and stiffness matrices, respectively. Equation (1.10) is written in 

At this point it is convenient to introduce the 

e remaining of the chapter. Matrices in capital letters are linear matrices, 

.11) the matrices Mij
e
  and, Kij

e
  are 

For a cubic Hermite beam element the matrices Mij
e
 

are the density, cross sectional area, Young’s modulus, area moment of inertia and length 

, and kiij
e
 , resulting from 

(1.14)

represents the inertia

the force and gravitational effect vectors, respectively 
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  Fi
e
 = 

   

The vector bi
e
  is the combination of the boundary terms in (1

The quantities V and M in (3.16) are the transverse shear force and bending moment of the beam. For a beam, 

the bending moment and shear force are given by (Rao, 1990)

M = EIv" ,  V
 
The force Fa in (1.16) can be interpreted as part of the axial force required to maintain the inextensionality 

constraint. The origin of Fa is understood upon examination of the order two 

multiplier. The Lagrange multiplier is interpreted

constraint (Malatkar, 2003). Recall from Chapter 2, the order two expression for the Lagrange multiplier is

 

 

For planar motion of the cantilever beam (1
 

This can be written as 

 λ = −Fe  − F
 
with Fe, Fa, and Wb given by 

 

From (1.20) it is clear the Lagrange multiplier 

the inertial force (Fa) and the weight of the beam above point 

part of the axial force required to maintain the inextensionality constraint.

 

Assembly and Implementation of Boundary Conditions
Assembly of the N element equations yields the global finite element equation
 

Which is a system of 2(N+1) ordinary differential equations, i.e., one for each nodal degree of freedom. The 

solution of this system is the vector q j , which contains the nodal displacements and nodal rotations in the global 

coordinates S and Y (Figure 3.1). The global linear mass matrix 
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= ∫ψi Fds , gi
e
 = ρAg ∫ψi f3ds  

0   0   

tion of the boundary terms in (1.9). 

         

in (3.16) are the transverse shear force and bending moment of the beam. For a beam, 

the bending moment and shear force are given by (Rao, 1990) 

V = (EIv")' (1.17)

.16) can be interpreted as part of the axial force required to maintain the inextensionality 

is understood upon examination of the order two expressions

The Lagrange multiplier is interpreted as the axial force required maintaining

constraint (Malatkar, 2003). Recall from Chapter 2, the order two expression for the Lagrange multiplier is

(1.18)

motion of the cantilever beam (1.18) becomes 

 (1.19) 

Fa −Wb        (1.20) 

(1.21)

From (1.20) it is clear the Lagrange multiplier λ is the combination of three forces, namely the elastic force 

and the weight of the beam above point s along the neutral axis (

part of the axial force required to maintain the inextensionality constraint. 

Assembly and Implementation of Boundary Conditions 

element equations yields the global finite element equation 

 (1.22) 

ordinary differential equations, i.e., one for each nodal degree of freedom. The 

, which contains the nodal displacements and nodal rotations in the global 

(Figure 3.1). The global linear mass matrix M ij is calculated using (1
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(1.15)

         (1.16) 

in (3.16) are the transverse shear force and bending moment of the beam. For a beam, 

.17)

.16) can be interpreted as part of the axial force required to maintain the inextensionality 

expressions for the Lagrange 

maintaining the inextensionality 

constraint (Malatkar, 2003). Recall from Chapter 2, the order two expression for the Lagrange multiplier is 

(1.18) 

(1.21) 

is the combination of three forces, namely the elastic force (Fe), 

(Wb). Hence, Fa is indeed 

ordinary differential equations, i.e., one for each nodal degree of freedom. The 

, which contains the nodal displacements and nodal rotations in the global 

culated using (1.12). The nonlinear 
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damping matrix is calculated using proportional damping (Cook, 1995).

combination of the mass and nonlinear stiffness matrices.
 

The nonlinear stiffness matrix kij is the combination of the linear stiff

two nonlinear stiffness matrices kcij and 

kij  = Kij − kc

 

The nonlinear force vector fi is the combination of the linear force vector and the gravitational effect vector, both 

calculated with (3.15). 

fi  = Fi + gi

The boundary vector bi is defined using the element boundary vector given by (

M, and Fa in (1.16) cancel out upon assembly for all nodes except for the first and last nodes. Therefore, the 

global boundary vector has non zero elements only at the fixed and free ends of the beam. The boundary 

conditions of the problem are used to evaluate 

v(0,t) = 0, 

v"(l,t) = 0, 
 
The elements of the boundary vector for the fixed end are given by

b1 = ψ1v'(v'V + v"M ) 

b2  = ψ 2 v'(v'V + v"M )

For the fixed end, v' is zero according to the boundary conditions in (

and b2 vanish and (1.27) becomes 

b1 = ψ1V −ψ1 'M ,    b2  

The elements of the boundary vector corresponding to the free end are

b
2( N +1)−1 = ψ3v'(v'V + v"M ) −

b
2( N +1) 

=

 ψ4v'(v'V + v"M ) −
For the free end, both v" and v''' are zero from the boundary conditions. As a result, both the 

bending moment are zero according to (

force Fa is zero at the free end, according to (3.21). Therefor

b
2( N +1)−1 

=

 

b
2( N +

Since the displacement and rotation at the fixed end are both known from the boundary conditions, the first two 

equations in (1.22) do not need to be included as part of the 

are saved for post processing of the solution.

two equations of the system for post processing yields
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damping matrix is calculated using proportional damping (Cook, 1995). Therefore, is approximated as a linear 

combination of the mass and nonlinear stiffness matrices. 

   (1.23) 

is the combination of the linear stiffness matrix, calculated using (1

and kiij , calculated with (3.14). 

kcij − kiij (1.24)

is the combination of the linear force vector and the gravitational effect vector, both 

gi (1.25)

is defined using the element boundary vector given by (1.16). The internal reactions 

.16) cancel out upon assembly for all nodes except for the first and last nodes. Therefore, the 

global boundary vector has non zero elements only at the fixed and free ends of the beam. The boundary 

conditions of the problem are used to evaluate bi. From the previous chapter the boundary conditions are

v'(0,t) = 0  
(1.26)

v'''(l,t) = 0  

The elements of the boundary vector for the fixed end are given by 

 +ψ1v'Fa  +ψ1V −ψ1 'M 

) +ψ 2 v'Fa  +ψ 2V −ψ 2 'M  

is zero according to the boundary conditions in (1.26). Therefore, the first two terms of 

  = ψ 2V −ψ 2 'M (1.28)

of the boundary vector corresponding to the free end are 

−ψ3 'M +ψ3V +ψ3v'Fa 
(1.29)

−ψ4 'M +ψ4V +ψ4v'Fa  

are zero from the boundary conditions. As a result, both the 

bending moment are zero according to (1.17), causing the first three terms in (1.29) to vanish. Also, the inertial 

is zero at the free end, according to (3.21). Therefore, both b2( N +1)−1 and b2( N 

+1)  

=

 

0
 (1.30)

Since the displacement and rotation at the fixed end are both known from the boundary conditions, the first two 

.22) do not need to be included as part of the system of equations to be solved. These equations 

are saved for post processing of the solution. Substituting the boundary vector into (1

two equations of the system for post processing yields  
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Therefore, is approximated as a linear 

ness matrix, calculated using (1.13), and the 

.24)

is the combination of the linear force vector and the gravitational effect vector, both 

.25)

.16). The internal reactions V, 
.16) cancel out upon assembly for all nodes except for the first and last nodes. Therefore, the 

global boundary vector has non zero elements only at the fixed and free ends of the beam. The boundary 

From the previous chapter the boundary conditions are 

.26)
 

 

 

(1.27)  

 

 

.26). Therefore, the first two terms of b1 

.28)

.29)  

 

 

are zero from the boundary conditions. As a result, both the sheer force and 

.29) to vanish. Also, the inertial 

 +1) are zero. 

.30)

Since the displacement and rotation at the fixed end are both known from the boundary conditions, the first two 

system of equations to be solved. These equations 

1.22), and saving the first 
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The superscript r in (1.31) stands for reduced, since the first two equations are eliminated.

 

Newmark Technique 

 

In this section, the linear global finite element equation of motion is used to illustrate the Newmark technique. 

The linear equation of motion is given by

 

And is obtained by omitting the nonlinear matrices 

(1.31). The matrices M ij , Cij , Kij and the vector 

are eliminated. However, the superscript 

time interval [- t, t], where t is the time step (Figure 

segments of length t each. Dividing the interval in this manner creates three discrete time points (Figure 3). For 

each one of these time nodes 
5
 there is a displacement vector 

is Q 
d

j 
+1

 , while the displacement vectors for times
 

The displacement vector at any time inside the interval in Figure 3 is approximated by

Q j  = Φd −1Q
d
j 

−1
 + Φ

 

where Φd-1, Φd, and Φd+1 are the shape functions given by (Zienkiewicz, 1977)

The dimensionless time coordinate ν in (1

 

The displacement vector Q j  in (1.33) is a quadratic polynomial in 

interpolated in a way similar to the displacement vector (Zienkiewicz, 1977). Therefore the force 
 

F = Φ F d −1 + Φ F 
i d −1  i  d   i 
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 (1.31) 

) stands for reduced, since the first two equations are eliminated.

In this section, the linear global finite element equation of motion is used to illustrate the Newmark technique. 

The linear equation of motion is given by 

 (1.33) 

Figure 3: Interval for discretization in the time domain

is obtained by omitting the nonlinear matrices kcij and kiij , as well as the gravitational effect vector 

and the vector Fi are reduced matrices since the first two rows and columns 

are eliminated. However, the superscript r is dropped for simplicity. Equation (1.32) is discretized within the 

is the time step (Figure 1.3) and t is an arbitrary time. This interval is divided in two 

each. Dividing the interval in this manner creates three discrete time points (Figure 3). For 

there is a displacement vector associated to it. The displacement vector for time 

, while the displacement vectors for times 0 and - t are Q 
d

j  and Q 
d

j 
−1

 , respectively.

The displacement vector at any time inside the interval in Figure 3 is approximated by 
6

+ Φd Q
d

j  + Φd +1Q
d

j 
+1

 = Φk Q
k
j (1.33)

are the shape functions given by (Zienkiewicz, 1977) 

 (1.34) 

in (1.34) is defined as 

 (1.35) 

.33) is a quadratic polynomial in t. The force inside the

interpolated in a way similar to the displacement vector (Zienkiewicz, 1977). Therefore the force 

F 
d
  + Φ F d +1 = Φ F 

k
 (1.36)

 d +1  i k   i  
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) stands for reduced, since the first two equations are eliminated. 

In this section, the linear global finite element equation of motion is used to illustrate the Newmark technique. 

 
 

, as well as the gravitational effect vector gi in 

reduced matrices since the first two rows and columns 

.32) is discretized within the 

is an arbitrary time. This interval is divided in two 

each. Dividing the interval in this manner creates three discrete time points (Figure 3). For 

associated to it. The displacement vector for time t 

, respectively. 

6
 

.33)

 

. The force inside the interval [- t, t] is 

interpolated in a way similar to the displacement vector (Zienkiewicz, 1977). Therefore the force Fi is given by 

.36)
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Substitution of (1.33) and (1.36) into (1.32) yields the residual 
 

with k ranging from d-1 to d+1. The weighted residual method is applied by multiplying (

function ω(t) and integrating from - t to 

Substituting the shape functions (1.34) into (1

 

 

 

 

 

 

 

 

 

Notice the variable of integration in (1

(1.35).Equation (1.39) can be simplified to

 

Equation (1.41) is used to solve for the displacement vector

.

where the quantities γ and β

 
∫1 ω(ν)(ν + 

1

γ = 2
−1 

 

  

  ∫1 ω(ν)dν
  −1  
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.32) yields the residual Rt. 

 (1.37) 

The weighted residual method is applied by multiplying (

to t. Equation (1.37) becomes then 

 (1.38) 

stituting the shape functions (1.34) into (1.38) results in 

1.40) has been changed from t to the dimensionless time coordinate 

.39) can be simplified to 

  (1.41) 

   (1.42) 

 

  (1.43) 

.41) is used to solve for the displacement vector in terms of the displacement vectors

   (1.44)  

β are given by    

1
)dν 

  1 
∫1 ω(ν )(1 +ν)νdν 

2 ,  β = 
 
2   −1  

    

     

ν     ∫1 ω(ν)dν 
     −1 
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The weighted residual method is applied by multiplying (1.37) by a weighting 

 (1.39) 

to the dimensionless time coordinate ν 

 

 

(1.43)  

in terms of the displacement vectors

 

 

 

 

(1.40) 
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The use of (1.44) to calculate the time history of the displacement vector 

next. Here TF is an arbitrary time. The time interval

[0,TF] has TN time nodes with 

 

The first time node corresponds to d=1

time node in [0, TF] is simply Q
1

j . In order to calculate 

done by using the initial conditions of the problem. For this problem it is assumed the beam starts from rest, 

which means the displacement vectors Q

Q
0

j  = Q 
−

j 
1
 = 

Substituting d=0 along with (1.46) into (1.44) yields

 

To calculate Q
2

j , the displacement vector for the n

displacement vectors for all time nodes in [0

for weighting function ω (ν). For this problem, the values 

average acceleration scheme (Zienkiewicz,). These values of 

of the displacement vector using (1.44) is unconditionally stable, i.e., independent of the size of 
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Figure 4: Time nodes in [0,TF] 

.44) to calculate the time history of the displacement vector Q j in the interval [0, TF] is illustrated 

is an arbitrary time. The time interval 

time nodes with TN given by (Figure 3.4)  

TN = 
TF 

+1 
t   

d=1, the second to d=2, and so on. The displacement vector for the second 

. In order to calculate Q
1

j , the vectors Q
0

j and Q
−

j
1
 must be prescribed. This is 

done by using the initial conditions of the problem. For this problem it is assumed the beam starts from rest, 

Q
0

j and Q
−

j
1
 are equal to the zero vector. 

= 0 (1.46)

along with (1.46) into (1.44) yields 

  (1.47) 

, the displacement vector for the next time node. In this manner (1.44) is used to calculate the 

displacement vectors for all time nodes in [0, TF]. The quantities γ and β in (1.40) vary depending on the choice 

. For this problem, the values γ = 0.5 and β = 0.25 are used. This corresponds to an 

average acceleration scheme (Zienkiewicz,). These values of γ and β ensure the computation of the time 

.44) is unconditionally stable, i.e., independent of the size of 
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in the interval [0, TF] is illustrated 

 

(1.45)  

 

 

and so on. The displacement vector for the second 

must be prescribed. This is 

done by using the initial conditions of the problem. For this problem it is assumed the beam starts from rest, 

(1.46)

.44) is used to calculate the 

in (1.40) vary depending on the choice 

= 0.25 are used. This corresponds to an 

ensure the computation of the time history 

.44) is unconditionally stable, i.e., independent of the size of t (Bathe). 
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Numerical Algorithm 

 
 

Figure 5: Algorithm used to calculate the time history of the displacement 

Figure 5 illustrates the process used to calculate the time history of the nonlinear displacement vector q j . 

The linear displacement vector Q j is calculated first. This linear displacement vector is then used to calculate a 

first guess of q j . Finally, the iterative process is used to obtain the nonlinear displacement vector q j for time t. 

This algorithm is implemented in the Matlab
®

 program NLB 
7
 in Appendix A

.Calculation of the Linear Displacement Qj 

The Newmark technique is used to calculate the linear displacement vector Qj in the interval [0,TF], with 0 < t < 

TF. This interval is divided in TN time nodes with TN defined by (1.45). 

Q 
d

j 
−1

 t Q 
d

j t Q 
d

j 
+1

 
 

     
 

       
 

       
 

 

t - 2 t t -  t t 
 

Figure 6: Displacement vectors used to calculate Qj at time t 
 

The linear displacement vector at time t is given by 
 
 
 
 
 
 
 
 

A1 = M 
ij 

+ γ tC 
ij 

+ β t 
2
 K 

ij 
  

 

ij      
 

A2ij = −2M ij + (1 − 2γ ) tCij + (0.5 − 2β + γ ) t 
2
 Kij (1.49)

 

A3ij = M ij − (1 −γ ) tCij + (0.5 + β −γ ) t 
2
 Kij  
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The coefficients γ and β are taken as 0.5 and 0.25, respectively. This corresponds to the average accele

scheme (Zienkiewicz). The matrix Cij   

the mass and stiffness matrices (Cook). Thus 

C
ij  

=α
1

M

The coefficients α1 and α2 are obtained by solving the system
 

ξ1 = 
α1 

+

α2ω1 
, 

2ω1 2     

 
The focus of this investigation is the time response of the cantilever beam when the base is excited at a frequency 

close to the third natural frequency. Therefore, the first and fourth natural frequencies and modal damping ratios 

are used in (1.51). The force vector in (1

Calculation of the Nonlinear Displacement q
 

The nonlinear displacement vector at an arbitrary time 
 

q
d
 
+1

 = a1
−1`

a2 q
d
 − a1

−1
 a3

j  ij il  l  ijil  l 

where q 
d

j , q 
d

j 
−1

 are the nonlinear displacement vectors for times 

Respectively (Figure 8).    

  q d −1  
t   j   

      
      

 

t - 2 t 

 

Figure 7: Displacement vectors used to calculate q
 

The matrices a1ij  , a2ij  and a3ij  in (1.53) are calculated using the global linear
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are taken as 0.5 and 0.25, respectively. This corresponds to the average accele

   is the linear damping matrix and is calculated as a linear

). Thus Cij is given by 

M
 ij 

+α
2 

K
ij (1.50)

are obtained by solving the system 

ξ4  = 
α1 

+ 
α2ω4 

(1.51)
2ω4 2    

The focus of this investigation is the time response of the cantilever beam when the base is excited at a frequency 

close to the third natural frequency. Therefore, the first and fourth natural frequencies and modal damping ratios 

1.48) is calculated as 

 (1.52) 

Respectively

Calculation of the Nonlinear Displacement qj 

The nonlinear displacement vector at an arbitrary time t in [0, TF] is given by 

3 q
d
 
−1

 + t
2
a1

−1
 f   (1.53)

  ij   i    

are the nonlinear displacement vectors for times t -  t, and t - 2 t,

     

q 
d

j  
t 

q 
d

j 
+1

  
    

     
     

t -  t t 

7: Displacement vectors used to calculate qj at time t 

.53) are calculated using the global linear mass matrix and the nonlinear 
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are taken as 0.5 and 0.25, respectively. This corresponds to the average acceleration 

is the linear damping matrix and is calculated as a linear combination of 

.50)

.51)
 

 

 

The focus of this investigation is the time response of the cantilever beam when the base is excited at a frequency 

close to the third natural frequency. Therefore, the first and fourth natural frequencies and modal damping ratios 

Respectively (Figure 6) 

.53)
 

 

2 t,
 

 

 

 

 

 

mass matrix and the nonlinear 
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stiffness matrix kij  given by (1.24). 
 

a1 = M 
ij 

+ γ tc 
ij 

+ β t 
2

ij     

a2ij = −2M ij + (1 − 2γ ) 

a3ij = M ij − (1 −γ ) tcij +
 
The coefficients γ and β are taken as 0.5 and 0.25, respectively. This corresponds to the average accele

scheme (Zienkiewicz) In order to obtain the nonlinear stiffness matrix 

must be calculated. These functions are used with (

which are substituted into (1.24) to obtain 

included in Appendix D. The matrix kc

damping matrix and is calculated as a linear combination of the mass and stiffness matrices (Cook)
 
 

 

 

 

The coefficients α1 and α2 are the same above. The force vector in (1.53) is calculated as

 

 

 

The nonlinear force vector fi is simply the combination of the linear force vector and the gravitational effect 

vector (1.25). The gravitational effect vector is calculated using a procedure similar to the one illustrated 

 

Iterative Procedure 

The iterative procedure used to obtain the nonlinear displacement vector at any given time 

in Figure 5. Once vectors Q j and q j are obtained as discussed, the error 

 

 

 

 

 

 

 

Where k is the total number of elements in each vector.

The error θ is compared to a maximum allowed error 

the vector q j is stored. However, if the error 

new q j is calculated (Figure 5). This procedure is repeated until convergence is achieved.

 

Conclusion 

 

c
ij  

=

 

α
1

M
 ij 

+

f = t 
2
 {βf 

d
 
+1

 + 

i i  

k 

θ = ∑ qm
j − Qm

j 
m =1 

θ ≤ TOL  for convergence
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2
 k 

ij 
  
  

 tcij + (0.5 − 2β + γ ) t 
2
 kij (1.54)

+ (0.5 + β −γ ) t 
2
 kij  

are taken as 0.5 and 0.25, respectively. This corresponds to the average accele

In order to obtain the nonlinear stiffness matrix kij , the functions 

must be calculated. These functions are used with (1.14) to compute the nonlinear stiffness matrices 

obtain kij . A detailed example of the procedure used to calculate 

kcij is calculated using a similar procedure. The matrix 

damping matrix and is calculated as a linear combination of the mass and stiffness matrices (Cook)

are the same above. The force vector in (1.53) is calculated as

 Respectively

is simply the combination of the linear force vector and the gravitational effect 

vector (1.25). The gravitational effect vector is calculated using a procedure similar to the one illustrated 

The iterative procedure used to obtain the nonlinear displacement vector at any given time 

are obtained as discussed, the error θ is calculated 

is the total number of elements in each vector. 

is compared to a maximum allowed error TOL. Once θ ≤ TOL, the solution is converged and 

is stored. However, if the error θ exceeds the maximum allowed error, q 

is calculated (Figure 5). This procedure is repeated until convergence is achieved.

+α
2 

k
ij (1.55)

+ (0.5− 2β + γ ) f 
d
 + (0.5+ β −γ ) f 

d
 
−1

 } 
i  i  

 

 
 

convergence (1.57)
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.54)
 

 

are taken as 0.5 and 0.25, respectively. This corresponds to the average acceleration 

, the functions f1 and f2 defined and  

.14) to compute the nonlinear stiffness matrices kcij and kiij , 

. A detailed example of the procedure used to calculate kiij is 

. The matrix cij is the nonlinear 

damping matrix and is calculated as a linear combination of the mass and stiffness matrices (Cook) 

are the same above. The force vector in (1.53) is calculated as 

Respectively 

is simply the combination of the linear force vector and the gravitational effect 

vector (1.25). The gravitational effect vector is calculated using a procedure similar to the one illustrated  

The iterative procedure used to obtain the nonlinear displacement vector at any given time t is illustrated 

 

, the solution is converged and 

 j is assigned to Q j and a 

is calculated (Figure 5). This procedure is repeated until convergence is achieved. 

(1.56)
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