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ANNOTATION
In this article applications of quaternion theory to vector algebra are highlighted. The relations between
operations on three-dimensional space vectors and calculations on quaternions are given.
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In the middle of the 19th century the appearance of quaternions stimulated various researches in the fields of
mathematics and physics. In particular, because of quaternions, one of the important branches of
mathematics - algebra of vectors was created. It can be clearly noticed that the algebra of vectors arose after
preliminary conclusions of the theory of quaternions. The scientific works of the English mathematician W.
Hamilton, who was really the founder of the theory of quaternions, dates back to the 50s of the 19th century,
and the works of the American physicist and mathematician D. Gibbs to form the main place of vector
algebra in mathematics dates back to the 80s of the 19th century.

Quaternion - (from latin quaterni - "of four") term was proposed by the English scientist Hamilton (1843)
[1]. Below are represented the relationships between calculations on quaternions and operations on three-
dimensional space vectors.

Let's recall some concepts known to us from geometry. If we take a right-angled coordinate system in space,
and define vectors i, j, k, directed along the coordinate axis from the origin of the coordinates, and whose
length is equal to 1 (picture 1), then any sum of the form bi+cj+dk represents a certain vector. This vector is
a vector from the beginning of coordinates O to the point M with coordinates b, c, d .

Z

M (b, ¢, d)
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Any quaternion of the form g=a+ bi+cj+dk represents vector of the form bi+cj+dk and a a real number. We
call the number a the numerical (real) part of the quaternion g , and the expression bi+cj+dk is its vector
part. Now let's look at two quaternions g 1=a1+b 1i+c1j+d 1kand qz2=a2+bzi+c 2j+d 2k .
According to the rule of multiplying quaternions we get the following result [3] by multiplying them:
gi1q2=-(b1b2+cico+di1d2)+(c1d2-dicC2)i+(d1b2-b1d2)j+(b1c2-C1b2)k
1)
We write the numerical part and the vector parts of the quaternion q 1 q 2 separately :
numerical part of q1g2--(b1b2+cic2+d1d2) (2)
vector partof q1g2-(c1d2-d1c2)it(d1b2-b1d2)j+(b1c2-c1b2)k(3)
Each of the expressions (2), (3) expresses a certain geometric meaning. We show that the sumof b1 b2 +c 1
c2+d 1d 2is equal to the expression |q 1|q 2 |cos ¢ which determines multiplication of the modules of q 1
and q 2 quaternions and the cosine of the angle between them. Let’s consider the scalar product of qi, g2
vectors. Note that the scalar product is denoted as (qi, gz), not a vector, but a certain number. Thus,
according to the definition of the scalar product (q1,02) =|g1/|gz2|cose.
Let’s prove the formula (q.,02) = bib2+cico+didz (4). In picture 2 a triangle constructed on ¢ 1 and q 2 of
vectors is depicted. The first tip of the triangle lies at the origin of the coordinates and the other two tips are
on the points My and M2 with coordinates by, ¢, d1 and b, c2, da.
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Picture 2. _

( M1and M2 points are the tips of the gi and g 2 vectors respectively.)

The following are known to us:

OMi%=bi?+ci?+d1?, OM2%=b?+c%+d2?, MiM2? = (b1-b2)?+(C1-C2)>+(d1-d2)?, after that MiM2? = OM %+
OM2%-(biba+cico+didz). And from the theorem of cosines: MiMz? = OM12+ OM2?-2 OM1-:OMy-cosp where
¢ - g1 and gz the angle between the vectors.

By equating the above expressions, we get the following expression to be proved:
OM1-OM2-cose=b1by+ciCo+d1d>.

Thus , the real part of the product of g: and g2 quaternions is equal to the obtained with the opposite sign of
scalar multiplication of g1 and g».

If g1 and qq if the vectors are perpendicular, it is clear that their scalar product is equal to zero ( ¢=n/2, cos
¢=0 ), and therefore the real part of the product g1 gz is also zero. In this case qi, g2 will consist of clean
vectors. The converse of this statement is also valid, that is, if gy, g2 is a clean vector, then the scalar product
of qrand g2 isequal to 0. giand gz are perpendicular while gz g2 =-0102 can also be seen from formula (1).
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Expressing the geometric meaning of the vector part of the product q:q> (the expression on the right side of
equation (3)) is somewhat difficult. This expression is called the vector product of the vectors g: and g2 and
is denoted by [q:1,92].
[91,92] =(c1d2-d1C2)i+(d1b2-b1d2)j +(b1Co-C1b2)k.
The vector [g1,92 ] is perpendicular to each of the vectors gi and g2, and its length is |g1]|g2/sing or the face
of the parallelogram S constructed from the vectors g1 and .
To prove the perpendicularity of the vectors [qg1,q2] and q:, as is well known, it suffices to check that the
real part of the product of quaternions is equal to zero or that their product is a “clean” vector. But since
[91,02] =002 +(q1G2) from (1) and (4), then qa[1,02]=q1(qG202+(01,02)) =02°d2+ (92.02) A1 = -[02Q2 +(qr92) .
On the right side, a vector is formed, consisting of the sum of two more vectors. The perpendicularity of the
vectors [q:,92] and g2 can be shown in the same way.
Now let's find the length of the vector [q1,02].
Its square is equal to (C102-d1C2)%+(d1b2-b1d2)?+(b1C2-C1b2)? or (ba?+Ci?+d1?)(b2?+C22+d22)-(b1b2+Cico+d1d2)? .
The last expression represents |01|?(02/%-(q1,02)? , or by the definition of scalar product |g1[?(02]*- [g1[?|gz|*cos?e,
or |01f?|02/?sin?e. Therefore, the square of the length of the vector [qs ,02 ] is equal to  |q1[?[02[?Sine, or S?,
which is the statement required to be proved. The indicated properties of the vector [q: ,02 ] , i.e., the
perpendicularity of g1 and g2 and its length equal to S, do not completely define it. [q1,92], g1 and g2 and its
length equal to S, do not completely determine it. Such properties are represented by two mutually opposite
vectors. (picture 3).

Picture 3.

Thus, for pure vector quaternions, the formula 102 = - (g1, 2 )+ [01,92] is appropriate. Here, (g1, g2) is the
scalar product of g1,g2 and [g1,92] is the vector product. It can be seen from them that scalar and vector
multiplications are "pieces"” of quaternion multiplication. The operations of vector scalar multiplication and
vector multiplication belong to the section of vector algebra of mathematics that has interdisciplinary
applications in physics, mathematics itself, especially in mechanics.

Quaternion multiplication is a key tool in solving some problems of geometry and mechanics because it
combines 2 different multiplications of vectors, namely scalar and vector multiplication.
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