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ABSTRACT 

This paper deals with the Bayesian and classical estimation of parameter θ of a distribution known as the 

Weibexpo Distribution .The estimation has been performed for type II censored samples. In classical setup 

the Maximum Likelihood Estimator (MLE) and the Unique Minimum Variance Unbiased (UMVU) Estimator 

of θ  and the Reliability of the distribution have been obtained. In the Bayesian setup estimates of θ and the 

reliability of the distribution have been obtained .The estimation has been performed by taking a Natural 

Conjugate prior distribution for θ and four different types of loss functions. On the part of loss functions, the 

Squared Error Loss Function (SELF), DeGroot Loss Function (DLF), Minimum Expected Loss (MELO) 

Function and Exponentially Weighted Minimum Expected Loss (EWMELO) Function have been considered. 

Bayes Risks of Bayes estimators corresponding to four loss functions have also been obtained. 
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Estimator, Reliability, Type II Censoring Bayes Estimator, Squared Error Loss Function (SELF), DeGroot 

Loss Function (DLF), Minimum Expected Loss (MELO) Function and Exponentially Weighted Minimum 

Expected Loss (EWMELO) Function.Bayes Risk.  

 

1.INTRODUCTION 

Consider a system consisting of (p + q) components connected in series. Where,p ≥ 0, q ≥ 0,.Let Xi be the 

life of the ith component ,i = 1,2 …  p + q.For i = 1,2 … . p,let the distribution of  Xi has exponential 

distribution with common probability density function given by, 

f(x, θ) = {
1

θ
e−

x

θ, if x > 0, θ > 0

0, Otherwise        
     (1.1) 

In this case, P( Xi > t) = e−
t

θ , i = 1,2 … . p 

While for the remaining q components distribution of  Xi has Weibull distribution with common probability density 

function given by, 

g(x, α, θ) = {
αxα−1

θ
e−

xα

θ , if x > 0, θ > 0, α > 0

0, Otherwise        
    (1.2) 

In this case, P( Xi > t) = e−
tα

θ  , i = p + 1, p + 2 … . p + q 

Let Y be the life of the system. Since the components are connected in series, Y = Mininmum (X1 

,  X2,…  Xp+q).The reliability of the system, denoted by R(t) = P(Y > t),is given by, 

R(t, α, θ) = P(Y > t) = ∏ P(Xi > t) = e− 
(pt+qtα)

θ
p+q
i=1  (1.3) 

The probability density function of Y is given by, h(y, α, θ) = −R′(y, α, θ) and so, 

h(y, α, θ) = {
(p+qαyα−1)

θ
e−

(py+qyα)

θ , if y > 0, θ > 0, α > 0

0, Otherwise                                                     
  (1.4)           

For p = 1 and q = 0,(1.4) reduces to exponential distribution with parameter θ while for p = 0 and q = 1 

,(1.4) reduces to  Weibull distribution with shape parameter α and scale parameter θ. Remark :1.It is to be 

noted that (1.4) always represents a probability density function even if p > 0 , q > 0 are not necessarily 

positive integers. For p = 0 ,q = 1 and α = 2,(1.4) reduces to Rayleigh distribution 

Remark :2.It is to be noted that the random variable U = (pY + qYα) has the same probability density function 

given by (1.1) and so, 
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h1(u, θ) = {
1

θ
e−

u

θ, if u > 0, θ > 0

0, Otherwise        
   (1.5) 

We call the distribution having p. d. f given by (1.4) as Weibexpo Distribution. 

In this paper, classical and Bayesian procedure has been adopted to obtain estimates of θ and R(t, α, θ),when 

α is known. The estimation has been performed under type II censoring. The Maximum Likelihood Estimator 

(M.L.E.) and Unique Minimum Variance Unbiased Estimator (UMVUE) have been obtained. In Bayesian 

framework, estimation has been performed under the assumption of a Natural Conjugate Prior density for θ. 

The loss functions considered are as under: 

1.The Squared Error Loss Function (SELF): In this case, the loss function denoted by L(θ, δ), 

is given by, 

L(θ, δ) = (θ − δ)2    (1.6) 

This loss function is symmetric and unbounded. It suffers from the drawback of giving equal weights to 

underestimation as well as to overestimation. 

2. DeGroot Loss Function (DLF): In this case 

L(θ, δ) = δ−2(θ − δ)2         (1.7) 

This loss function, introduced by DeGroot (2005), is asymmetric. It gives more weight to underestimation 

than to overestimation. 

3.Minimum Expected Loss (MELO) Function: In this case, 

L(θ, δ) = θ−2(θ − δ)2      (1.8) 

This loss function is asymmetric and bounded. In this case weight due to underestimation and overestimation 

is changed by a factor θ−2 as compared to the SELF. This loss function was used by Tummala and Sathe 

(1978) for estimating reliability of certain life time distribution and by Zellner (1979) for estimating functions 

of parameters in econometric models. 

4. Exponentially Weighted Minimum Expected Loss (EWMELO) Function 

 w(θ, δ) = θ−2e−aθ−1
(θ − δ)2  (1.9) 

This loss function is asymmetric and bounded. In this case weight due to underestimation and overestimation 

is changed by a factor e−aθ−1
 as compared to the MELO and by a factor θ−2e−aθ−1

 as compared to the SELF. 

This type of loss function was used by the author (1997) for the first time in his work for D.Phil. SELF, MELO 

and EWMELO were used by Singh, the author, (1999) in the study of reliability of a multicomponent system   

and (2010) in Bayesian Estimation of the mean and distribution function of Maxwell’s distribution. Recently, 

the author again used these loss functions  in Bayesian estimation of function of the unknown parameter θ for 

the Modified Power Series Distribution (MPSD) (2021) ,for estimating Loss and Risk Functions of a 

continuous distribution (2021),for estimating moments and reliability of Geometric distribution. In addition 

to these loss functions, the author has used Degroot loss function while estimating the unknown parameter 

and reliability of Burr Type XII distribution. 

The results obtained in this paper give classical and Bayesian estimates of unknown  parameter θ for  a number 

of distributions as particular cases as under: 

For p = 1 and q = 0 results obtained for the MLE and UMVUE coincide with that given by  Epstein and 

Sobel (1953) for the exponential distribution while under SELF the Bayes estimates coincide with that given 

by Bhattacharya (1967) corresponding to natural conjugate prior.Under MELO we get the result for 

exponential distribution similar to that as given by Tummala and Sathe (1978). For p = 0 ,q = 1 and known 

value of  α ,we get results for MLE and UMVUE of Weibull distribution while under MELO the Bayes 

estimates are similar to that given by Tummala and Sathe (1978).For p = 0 ,q = 1 and α = 2 results obtained 

for the MLE and UMVUE coincide with that of Rayleigh distribution while under SELF the Bayes estimates 

are similar to that given by Bhattacharya and Tyagi (1990) for the natural conjugate prior. 

 

2.ESTIMATION OF 𝛉 AND 𝐑(𝐭, 𝛂, 𝛉) UNDER type II CENSORING 

Let Y1, Y2, Y3,… Yn be a random sample of size n and Y(1) <  Y(2) <  Y(3) <…< Y(n−1) < Y(n) be the order 

statistic corresponding to this random sample having p.d.f given by (1.4). In case of type II censoring, n items 

are placed on test and the test is terminated after first ‘r’ (r pre-specified) failures. Thus, only r ordered 
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observed values of Y(1) <  Y(2) <  Y(3) <…< Y(r−1) < Y(r) are recorded. For observed values y(1) <  y(2) <

 y(3) <…< y(r−1) < y(r),the likelihood function, when α  is known ,denoted by L(θ) ,is given by, 

L(θ) = kθ−re−
tr
θ                 (2.1) 

Where, k is function of n, p, q, r and y(i),i=1,2…r and does not contain θ. 

tr = ∑ u(i)
r
i=1 + (n − r)u(r)    (2.2) 

Where,u(i) = py(i) + qy(i)
α  ,i=1,2…r. 

tr is an observed value of the statistic Tr given by, 

 Tr = ∑ U(i)
r
i=1 + (n − r)U(r)     

Where,U(i) = pY(i) + qY(i)
α  ,i=1,2…r        (2.3) 

l(θ) = lnL(θ) = −rlnθ −
tr

θ
 

𝜕𝑙(𝜃)

𝜕𝜃
=

−𝑟

𝜃
+

𝑡𝑟

𝜃2
 

Solving 
𝜕𝑙(𝜃)

𝜕𝜃
= 0 and denoting the solution by 𝜃 , we have, 

𝜃 =
𝑡𝑟

𝑟
                                         (2.4) 

Thus, the Maximum Likelihood Estimate of 𝜃 is 𝜃 =
𝑡𝑟

𝑟
.The corresponding estimator is, 

𝑇𝑟

𝑟
. 

The estimator 
𝑇𝑟

𝑟
 is also UMVU and efficient for 𝜃.This is proved as under: 

The p. d. f of 𝑉 =
𝑇𝑟

𝑟
   is derived and is given by, 

𝑔2(𝑣, 𝜃) = {
1

𝛤(𝑟)
(

𝑟

𝜃
)𝑟𝑣𝑟−1𝑒−

𝑟𝑣

𝜃 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.     
if v > 0, 𝜃 > 0                 (2.5) 

PROOF 

If 𝑌(1) <  𝑌(2) <  𝑌(3) <…< 𝑌(𝑛−1) < 𝑌(𝑛) is the order statistic corresponding to a random sample of size n 

having p.d.f given by (1.4) then, 𝑈(1) < 𝑈(2) < ⋯ < 𝑈(𝑛) constitute an order statistic of size n corresponding 

to a random sample of size n from the distribution specified by (1.5),where, 𝑈(𝑖) = 𝑝𝑌(𝑖) + 𝑞𝑌(𝑖)
𝛼 .Since 𝑈 =

(𝑝𝑌 + 𝑞𝑌𝛼) has the p.d,f. given by (1.5).It is to be noted that 𝑃(𝑌(1) > 𝑡) = 𝑒− 
𝑛(𝑝𝑡+𝑞𝑡𝛼)

𝜃 = 𝑃(𝑈(1) > 𝑝𝑡 +

𝑞𝑡𝛼).The joint p.d.f. of , 𝑈(1) < 𝑈(2) < ⋯ < 𝑈(𝑟) ,is given by, 

ℎ∗(𝑢(1), 𝑢(2), 𝑢(3), … , 𝑢(𝑟−1), 𝑢(𝑟), 𝜃)  

= 
𝑛!

(𝑛−𝑟)!
{∏ ℎ1(𝑢(𝑖), 𝜃)}𝑟

𝑖=1 {𝑅(𝑢(𝑟), 𝜃)}(𝑛−𝑟) , 𝑖𝑓 0 < 𝑢(1) <  𝑢(2) <  𝑢(3) < ⋯ < 𝑢(𝑟−1) < 𝑢(𝑟) < ∞; 𝜃 > 0 

= {∏ (
(𝑛−𝑖+1)

𝜃
)} 𝑟

𝑖=1  𝑒−
𝑡𝑟
𝜃   

Let 𝐿1 = 𝑈(1) = 𝑝𝑌(1) + 𝑞𝑌(1)
𝛼 ,  

𝐿𝑖 = 𝑈(𝑖) − 𝑈(𝑖−1), i=2,3,4…..r. Then, 

∑ (𝑛 − 𝑖 + 1)𝐿𝑖
𝑟
𝑖=1 = ∑ 𝑈(𝑖)

𝑟
𝑖=1 + (𝑛 − 𝑟)𝑈(𝑟) = 𝑇𝑟 . 

The Jacobian of the transformation from (𝑈(1), 𝑈(2), 𝑈(3),…,𝑈(𝑟−1), 𝑈(𝑟)) to (𝐿1, 𝐿2,…. 𝐿𝑟) is1.So the joint p. 

d. f. of 𝐿1, 𝐿2,…. 𝐿𝑟 say , 𝑔1(𝑙1, 𝑙2,…. 𝑙𝑟) ,is given by, 

𝑔1(𝑙1, 𝑙2,…. 𝑙𝑟) = {∏ (
(𝑛−𝑖+1)

𝜃
)𝑟

𝑖=1  𝑒−
∑ (𝑛−𝑖+1)𝑙𝑖

𝑟
𝑖=1

𝜃 , 0 < 𝑙1 <  𝑙2 <  𝑙3 < ⋯ < 𝑙𝑟−1 < 𝑙𝑟 < ∞

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                         
  

This shows that 𝐿1, 𝐿2,…. 𝐿𝑟are mutually independent and for each 𝑖, 𝑉𝑖 = (𝑛 − 𝑖 + 1)𝐿𝑖 has exponential 

distribution having p. d. f. 

𝑔𝑖(𝑣𝑖 , 𝜃) =  {
1

𝜃
𝑒−

𝑣𝑖
𝜃 , 𝑖𝑓 𝑣𝑖 > 0, 𝜃 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
  

Hence, 𝑉 =
𝑇𝑟

𝑟
=

∑ (𝑛−𝑖+1)𝐿𝑖
𝑟
𝑖=1

𝑟
=

∑ 𝑉𝑖
𝑟
𝑖=1

𝑟
 ,has p. d. f. 
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𝑔2(𝑣, 𝜃) = {
1

𝛤(𝑟)
(

𝑟

𝜃
)𝑟𝑣𝑟−1𝑒−

𝑟𝑣

𝜃 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.     
if v > 0, 𝜃 > 0. 

𝐸(𝑉) = 𝐸 (
𝑇𝑟

𝑟
) = ∫ 𝑣

∞

0
𝑔2(𝑣, 𝜃)𝑑𝑣 = 𝜃 . 

This shows that 
𝑇𝑟

𝑟
 is an unbiased estimator of 𝜃. 

Also, Var(
𝑇𝑟

𝑟
) = Var(𝑉)= ∫ 𝑣2∞

0
𝑔2(𝑣, 𝜃)𝑑𝑣 − 𝜃2 =

𝜃2

𝑟
 

Since, the joint p. d. f. of 𝑌(1) <  𝑌(2) <  𝑌(3) <…< 𝑌(𝑟−1) < 𝑌(𝑟) is given by, 

𝑓∗(𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑟−1), 𝑦(𝑟), 𝜃) = {∏ (
(𝑛−𝑖+1)(𝑝+𝛼𝑞𝑦(𝑖))

𝜃
)} 𝑟

𝑖=1  𝑒−
𝑡𝑟
𝜃   

𝑘1(𝑡𝑟 , 𝜃). 𝑘2(𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑟−1), 𝑦(𝑟))  

Where, 𝑘1(𝑡𝑟 , 𝜃) = 𝜃−𝑟𝑒−
𝑡𝑟
𝜃  , 

𝑘2(𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑟−1), 𝑦(𝑟)) = {∏ (
(𝑛−𝑖+1)(𝑝+𝛼𝑞𝑦(𝑖))

𝜃
)} 𝑟

𝑖=1   

Hence, by virtue of factorization criterion, 𝑇𝑟 is sufficient statistic for 𝜃. Since, 𝑇𝑟~𝐺(𝑟, 𝜃) and the family of 

Gamma distribution, with known parameter 𝑟 and unknown parameter 𝜃 ,is complete, 𝑇𝑟 is complete sufficient 

statistic for 𝜃.Hence,by virtue of Rao-Blackwell -Lehman-Scheff�́� Theorem, 
𝑇𝑟

𝑟
 ,is Unique Minimum Variance 

Unbiased(UMVU) estimator of 𝜃. 
Since, 

𝜕𝑙𝑛𝑓∗(𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑟−1), 𝑦(𝑟), 𝜃)

𝜕𝜃
= −

𝑟

𝜃
+

𝑟

𝜃2

𝑡𝑟

𝑟
 

 

𝜕2𝑙𝑛𝑓∗(𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑟−1), 𝑦(𝑟), 𝜃)

𝜕𝜃2
=

𝑟

𝜃2
−

2𝑟

𝜃3

𝑡𝑟

𝑟
 

−𝐸 {
𝜕2𝑙𝑛𝑓∗(𝑌(1),𝑌(2),𝑌(3),…,𝑌(𝑟−1),𝑌(𝑟),𝜃)

𝜕𝜃2 } = −
𝑟

𝜃2 +
2𝑟

𝜃3 𝐸(
𝑇𝑟

𝑟
)= 

𝑟

𝜃2.   

Hence, the Cram�́�r-Rao Lower bound = 
1

−𝐸{
𝜕2𝑙𝑛𝑓∗(𝑌(1),𝑌(2),𝑌(3),…,𝑌(𝑟−1),𝑌(𝑟),𝜃)

𝜕𝜃2 }

 = 
𝜃2

𝑟
 

Since,𝑉𝑎𝑟(
𝑇𝑟

𝑟
)  =  

𝜃2

𝑟
.So the Variance of 

𝑇𝑟

𝑟
 attains the Cram�́�r-Rao Lower bound and therefore, 

𝑇𝑟

𝑟
 is an 

efficient estimator of 𝜃. 

Consider random variables, 

𝑄1, 𝑄2,…. 𝑄𝑟 as follows: 𝑄𝑖 =
𝑉𝑖

∑ 𝑉𝑖
𝑟
𝑖=1

 , for 𝑖 = 1,2 … . 𝑟 − 1 

and 𝑄𝑟 = ∑ 𝑉𝑖
𝑟
𝑖=1  

The transformations 𝑞𝑖 =
𝑣𝑖

∑ 𝑣𝑖
𝑟
𝑖=1

 and 𝑞𝑟 = ∑ 𝑣𝑖
𝑟
𝑖=1  

map the set 𝒜 = {(𝑣1, 𝑣2, … . 𝑣𝑟): 𝑣𝑖 > 0, 𝑖 = 1,2 … 𝑟} onto the set ℬ = {(𝑞1, 𝑞2, … . 𝑞𝑟): 0 ≤ 𝑞𝑖 , 𝑖 =
1,2, … 𝑟 − 1; 0 ≤ 𝑞𝑟 < ∞, 𝑞1 + 𝑞2 + ⋯ + 𝑞𝑟−1 ≤ 1}.The inverse transformations are, 

𝑣𝑖 = 𝑞𝑖𝑞𝑟 , 𝑖 = 1,2. . 𝑟 − 1 and 𝑣𝑟 = 𝑞𝑟(1 − 𝑞1 − 𝑞2 − ⋯ − 𝑞𝑟−1).The Jacobian of this transformation, 

denoted by 𝐽 ,is given by, 

𝐽 =
𝜕(𝑣1,𝑣2,…𝑣𝑟)

𝜕(𝑞1,𝑞2,….𝑞𝑟)
=

|

|

𝑞𝑟 0 … . 𝑞1

0 𝑞𝑟 … . 𝑞2

0 0 𝑞𝑟 . . 𝑞3

. . … … … . .

. . … … … . .
−𝑞𝑟 − 𝑞𝑟 . . 𝑏

|

|
, 𝑏 = (1 − 𝑞1 − 𝑞2 − ⋯ − 𝑞𝑟−1). 

Or. 

𝐽 = 𝑞𝑟
𝑟−1  

The joint p. d. f. of 𝑄1, 𝑄2,…. 𝑄𝑟, denoted by𝑔∗(𝑞1, 𝑞2, … . 𝑞𝑟,𝜃) 
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 𝑔∗(𝑞1, 𝑞2, … . 𝑞𝑟,𝜃)={𝜃−𝑟𝑢𝑟
𝑟−1𝑒−

𝑢𝑟
𝜃 , 𝑖𝑓(𝑞1, 𝑞2, … . 𝑞𝑟) ∈ ℬ  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                         
 

Or, 

𝑔∗(𝑞1, 𝑞2, … . 𝑞𝑟,𝜃)={
(𝑟−1)!

𝛤(𝑟)
𝜃−𝑟𝑞𝑟

𝑟−1𝑒−
𝑢𝑟
𝜃 , 𝑖𝑓(𝑞1, 𝑞2, … . 𝑞𝑟) ∈ ℬ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 
 

This shows that (𝑄1, 𝑄2,…. 𝑄𝑟−1) is independent of 𝑄𝑟 and 𝑄𝑟  

has p. d. f.  

𝑔∗1( 𝑞𝑟,𝜃)={
1

𝛤(𝑟)
𝜃−𝑟𝑞𝑟

𝑟−1𝑒−
𝑞𝑟
𝜃 , 𝑖𝑓 0 ≤ 𝑞𝑟 < ∞               

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 
 

The random vector (𝑄1, 𝑄2,…. 𝑄𝑟−1) has the p. d. f. of Dirichlet distribution and is given by, 

𝑔2∗(𝑞1, 𝑞2, … . 𝑞𝑟−1,)={
(𝑟 − 1)!, 𝑖𝑓0 ≤ 𝑞𝑖, 𝑖 = 1,2, … 𝑟 − 1; 𝑞1 + 𝑞2 + ⋯ + 𝑞𝑟−1 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                    

 

The random vector (𝑄1, 𝑄2,…. 𝑄𝑟−2) has the p. d. f. of Dirichlet distribution and is given by, 

𝑔3∗(𝑞1, 𝑞2, … . 𝑞𝑟−2,) = (𝑟 − 1)! ∫ 𝑑𝑞𝑟−1

1−𝑞1−𝑞2−𝑞3−⋯𝑞𝑟−2

0

 

                                 = (𝑟 − 1)! (1 − 𝑞1 − 𝑞2−𝑞3 − ⋯ 𝑞𝑟−2) 
Similarly, 

The random vector (𝑄1, 𝑄2,…. 𝑄𝑟−3) has the p. d. f. of Dirichlet distribution and is given by, 

𝑔4∗(𝑞1, 𝑞2, … . 𝑞𝑟−3)=(𝑟 − 1)! ∫ (1 − 𝑞1 − 𝑞2−𝑞3 − ⋯ 𝑞𝑟−3)𝑑𝑞𝑟−2
1−𝑞1−𝑞2−𝑞3−⋯𝑞𝑟−3

0
 

                                 = 
(𝑟−1)!

2
(1 − 𝑞1 − 𝑞2−𝑞3 − ⋯ 𝑞𝑟−2)2  

Proceeding this way ,we get the p. d. f of the random variable 𝑄1 ,as follows: 

𝑔1∗( 𝑞1) = {
(𝑟 − 1)(1 − 𝑞1)𝑟−2, 𝑖𝑓 0 ≤ 𝑞1 ≤ 1                                              
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                    

     

This shows that 𝑄1 has Beta (1, 𝑟 − 1) distribution. Since,𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑒𝑐𝑡𝑜𝑟  (𝑄1, 𝑄2, … . 𝑄𝑟−1) is 

independent of 𝑄𝑟 . In particular 𝑄𝑟 = ∑ 𝑉𝑖
𝑟
𝑖=1  is independent of 𝑄1 =

𝑉1

∑ 𝑉𝑖
𝑟
𝑖=1

 

Since, 𝑉1 = 𝑛𝐿1 = 𝑛𝑈(1)has p .d . f. 

𝑔1(𝑣1, 𝜃) =  {
1

𝜃
𝑒−

𝑣1
𝜃 , 𝑖𝑓 𝑣1 > 0, 𝜃 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
 

𝑃(𝑉1 > 𝑝𝑡 + 𝑞𝑡𝛼) = 𝑃{(𝑛𝑈(1) > 𝑝𝑡 + 𝑞𝑡𝛼)} =  𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃 =  𝑅(𝑡, 𝜃) 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑉∗  defined as follows: 

𝑉∗ = {
1, 𝑖𝑓 𝑉1 >  𝑝𝑡 + 𝑞𝑡𝛼                                                                                              
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                        

 

𝐸(𝑉∗)=1. 𝑃(𝑉1 > 𝑝𝑡 + 𝑞𝑡𝛼)) + 0. 𝑃(𝑉1 < 𝑝𝑡 + 𝑞𝑡𝛼) = 𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃 = 𝑅(𝑡, 𝜃).  

So 𝑉∗ is an unbiased estimator of 𝑅(𝑡, 𝜃).By virtue of Rao-Blackwell-Lehman-Scheff�́� theorem,𝜑(𝑉∗) =

𝐸(𝑉∗ / ∑ 𝑉𝑖
𝑟
𝑖=1 ) is UMVU estimator of 𝑅(𝑡, 𝜃) = 𝑒− 

(𝑝𝑡+𝑞𝑡𝛼)

𝜃 .  

Now, 𝜑(𝑉∗) = 𝐸(𝑉∗ / ∑ 𝑉𝑖
𝑟
𝑖=1 )  =  𝑃(𝑉1 >  𝑝𝑡 + 𝑞𝑡𝛼/ ∑ 𝑉𝑖

𝑟
𝑖=1 ) =   𝑃 (

𝑉1

∑ 𝑉𝑖
𝑟
𝑖=1

>
𝑝𝑡+𝑞𝑡𝛼

∑ 𝑉𝐼
𝑟
𝑖=1

 / ∑ 𝑉𝑖
𝑟
𝑖=1 ) = 𝑃 (𝑄1 >

𝑝𝑡+𝑞𝑡𝛼

∑ 𝑉𝐼
𝑟
𝑖=1

 / ∑ 𝑉𝑖
𝑟
𝑖=1 )=(𝑟 − 1) ∫ (1 − 𝑞1)𝑟−2𝑑𝑞1

1
𝑝𝑡+𝑞𝑡2

∑ 𝑉𝑖
𝑟
𝑖=1

 =(1 −
𝑝𝑡+𝑞𝑡𝛼

∑ 𝑉𝑖
𝑟
𝑖=1

)𝑟−1 .Thus ,the UMVU estimator of  𝑅(𝑡, 𝜃) = 

𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃 ,denoted by , �̂�(𝑡, 𝜃) is given by , 

�̂�(𝑡, 𝜃) = {
(1 −

𝑝𝑡+𝑞𝑡𝛼

∑ 𝑉𝑖
𝑟
𝑖=1

)𝑟−1, 𝑖𝑓 𝑝𝑡 + 𝑞𝑡𝛼  < ∑ 𝑉𝑖
𝑟
𝑖=1                                                                  

0, 𝑖𝑓  𝑝𝑡 + 𝑞𝑡𝛼 ≥ ∑ 𝑉𝑖
𝑟
𝑖=1                                                                                           

  

Since, ∑ 𝑉𝑖
𝑟
𝑖=1 = 𝑇𝑟 = ∑ 𝑈(𝑖)

𝑟
𝑖=1 + (𝑛 − 𝑟)𝑈(𝑟) 
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�̂�(𝑡, 𝜃) = {
(1 −

𝑝𝑡 + 𝑞𝑡𝛼

𝑇𝑟
)𝑟−1, 𝑖𝑓 𝑝𝑡 + 𝑞𝑡𝛼  < 𝑇𝑟                                                                 

0, 𝑖𝑓  𝑝𝑡 + 𝑞𝑡𝛼 ≥ 𝑇𝑟                                                                                          

 

 

3.BAYESIAN ESTIMATION 

The Bayesian estimation of  𝜃 and 𝑅(𝑡, 𝜃) has been obtained by taking the Inverted gamma distribution as the 

prior probability distribution for 𝜃 and three different types of loss functions.  The probability density function 

of the prior distribution for 𝜃,denoted by 𝜋(𝜃),is given as follows: 

𝜋(𝜃)={
𝜇𝜈

𝛤(𝜈)
𝜃−(𝜈+1)𝑒−

𝜇

𝜃, 𝑖𝑓 0 < 𝜃 < ∞ , 𝜇, 𝜈 > 0              

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                            
(3.1) 

Where, 𝜇 𝑎𝑛𝑑 𝜈 are known. 

Since, in case of type II censoring, the likelihood function, denoted by 𝐿(𝜃) ,is given by, 

𝐿(𝜃) = 𝑘𝜃−𝑟𝑒−
𝑡𝑟
𝜃                                            (3.2) 

Where, 𝑘 is function of 𝑛, 𝑝, 𝑞, 𝑟 and 𝑦(𝑖),i=1,2…r and does not contain 𝜃. 

The posterior distribution of 𝜃,denoted by 𝜋(𝜃 /𝑡𝑟),is given by. 

 

𝜋(𝜃 /𝑡𝑟) =
𝐿(𝜃)𝜋(𝜃)

∫ 𝐿(𝜃)𝜋(𝜃)𝑑𝜃
∞

0

  

                = 
𝜃−(𝜈+𝑟+1)𝑒

−
(𝑡𝑟+𝜇)

𝜃

∫ 𝜃−(𝜈+𝑟+1)𝑒
−

(𝑡𝑟+𝜇)
𝜃 𝑑𝜃

∞
0

 = 
(𝑡𝑟+𝜇)𝑟+𝜈

𝛤(𝑟+𝜈)
𝜃−(𝜈+𝑟+1)𝑒−

(𝑡𝑟+𝜇)

𝜃  

Thus, 

𝜋(𝜃 /𝑡𝑟)={
(𝑡𝑟+𝜇)𝑟+𝜈

𝛤(𝑟+𝜈)
𝜃−(𝜈+𝑟+1)𝑒−

(𝑡𝑟+𝜇)

𝜃 , 𝑖𝑓 0 < 𝜃 < ∞ , 𝜇, 𝜈 > 0                

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .                                                                                 
 

It is to be noted that the posterior distribution 𝜋(𝜃 /𝑡𝑟) is also the probability density function of an Inverted 

gamma distribution. So  𝜋(𝜃) is a Natural Conjugate prior probability density for 𝜃.  
1.Under the Squared Error Loss Function given by, 𝐿(𝜃, 𝛿) = (𝜃 − 𝛿)2  , the Bayes estimate of 𝜃,denoted by 

𝜃𝐵 , is given by, 

𝜃𝐵 = 𝐸(𝜃 /𝑡𝑟) =∫ 𝜃𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0
=

(𝑡𝑟+𝜇)𝑟+𝜈

𝛤(𝑟+𝜈)
∫ 𝜃−(𝜈+𝑟)𝑒−

(𝑡𝑟+𝜇)

𝜃 𝑑𝜃
∞

0
= 

(𝑡𝑟+𝜇)

(𝑟+𝜈−1)
 

So, 

𝜃𝐵 =
(𝑡𝑟+𝜇)

(𝑟+𝜈−1)
 ,provided, 𝑟 + 𝜈 > 1         (3.4) 

2.Under the DeGroot Loss Function given by ,𝐿(𝜃, 𝛿) = 𝛿−2(𝜃 − 𝛿)2, the Bayes estimate of 𝜃,denoted by 

𝜃𝐷𝐺  , is given by, 

𝜃𝐷𝐺 =
𝐸(𝜃2 /𝑡𝑟)

𝐸(𝜃 /𝑡𝑟)
 =

∫ 𝜃2𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

∫ 𝜃𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

= 
(𝑡𝑟+𝜇)

(𝑟+𝜈−2)
,provided, 𝑟 + 𝜈 > 2         (3.5) 

3.Under the  Minimum Expected Loss (MELO) Function, given by, 𝐿(𝜃, 𝛿) = 𝜃−2(𝜃 − 𝛿)2 

,the Bayes estimate of 𝜃,(also known as the Minimum Expected Loss (MELO) Estimate, denoted by 𝜃𝑀 , is 

given by, 

𝜃𝑀 =
𝐸(𝜃−1 /𝑡𝑟)

𝐸(𝜃−2 /𝑡𝑟)
 = 

 ∫ 𝜃−1𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

∫ 𝜃−2𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

= 
(𝑡𝑟+𝜇)

(𝑟+𝜈+1)
 

𝜃𝑀 =
(𝑡𝑟+𝜇)

(𝑟+𝜈+1)
      (3.6) 

4.Under the Exponentially Weighted Minimum Expected Loss (EWMELO) Function, given by, 𝐿(𝜃, 𝛿) =

𝜃−2𝑒−𝑎𝜃−1
(𝜃 − 𝛿)2, the Bayes estimate of 𝜃 ,known as the Exponentially Weighted Minimum Expected Loss 

(MELO) Estimate, denoted by 𝜃𝐸𝑊 , is given by, 

𝜃𝐸𝑊 =
𝐸(𝜃−1𝑒−𝑎𝜃−1

 /𝑡𝑟)

𝐸(𝜃−2 𝑒−𝑎𝜃−1
/𝑡𝑟)

 =
∫ 𝜃−1𝑒−𝑎𝜃−1

𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

∫ 𝜃−2𝑒−𝑎𝜃−1
𝜋(𝜃 /𝑡𝑟)𝑑𝜃

∞
0

= 
(𝑡𝑟+𝜇+𝑎)

(𝑟+𝜈+1)
 

So, 
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𝜃𝐸𝑊 =
(𝑡𝑟+𝜇+𝑎)

(𝑟+𝜈+1)
          (3.7) 

The Bayes risk of a Bayes estimator 𝜃 of 𝜃,corresponding to a given loss function 𝐿(𝜃, 𝛿) is given by,𝐵(𝜃) =

 𝐸{𝐿(𝜃, 𝜃)}.Bayes risks of Bayes estimators corresponding to four loss functions considered are in the table 

as follows: 

 

3.1BAYES RISKS OF VARIOUS BAYES ESTIMATES OF 𝜽 
S.No. Loss Function Bayes Estimate Bayes Risk 

1. SELF 
�̂�𝐵 =

(𝑡𝑟 + 𝜇)

(𝑟 + 𝜈 − 1)
 𝐵(�̂�𝐵) =

(𝑡𝑟+𝜇)2

(𝑟+𝜈−1)2(𝑟+𝜈−2)
 

2. DLF 
�̂�𝐷𝐺 =

(𝑡𝑟 + 𝜇)

(𝑟 + 𝜈 − 2)
 𝐵(�̂�𝐷𝐺) =

1

(𝑟+𝜈−1)
 

3. MELO 
�̂�𝑀 =

(𝑡𝑟 + 𝜇)

(𝑟 + 𝜈 + 1)
 𝐵(�̂�𝑀) =

1

(𝑟+𝜈+1)
 

4. EWMELO 
�̂�𝐸𝑊 =

(𝑡𝑟 + 𝜇 + 𝑎)

(𝑟 + 𝜈 + 1)
 𝐵(�̂�𝐸𝑊) =

(𝑡𝑟+𝜇)𝑟+𝜈

(𝑡𝑟+𝜇+𝑎)𝑟+𝜈(𝑟+𝜈+1)
 

It is to be noted that 𝐵(𝜃𝐸𝑊) < 𝐵(𝜃𝑀) < 𝐵(𝜃𝐷𝐺). 

5.Under the Squared Error Loss Function, the Bayes estimate of 𝑅(𝑡, 𝜃) = 𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃  ,  𝛼 being known, 

denoted by �̂�𝐵(𝑡, 𝜃)  , is given by, 

�̂�𝐵(𝑡, 𝜃)   = 𝐸{𝑅(𝑡, 𝜃 )/𝑡𝑟} =∫ 𝑅(𝑡, 𝜃)𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0
=

(𝑡𝑟+𝜇)𝑟+𝜈

𝛤(𝑟+𝜈)
∫ 𝑒− 

(𝑝𝑡+𝑞𝑡2)

𝜃  𝜃−(𝜈+𝑟+1)𝑒−
(𝑡𝑟+𝜇)

𝜃 𝑑𝜃
∞

0
 = 

(𝑡𝑟+𝜇)𝑟+𝜈

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈 

So, 

�̂�𝐵(𝑡, 𝜃) =
(𝑡𝑟+𝜇)𝑟+𝜈

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈        (3.8) 

6. Under the DeGroot Loss Function the Bayes estimate of 𝑅(𝑡, 𝜃) = 𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃  ,  𝛼  being known, denoted 

by �̂�𝐷𝐺(𝑡, 𝜃)  , is given by, 

�̂�𝐷𝐺(𝑡, 𝜃)   =
𝐸[{𝑅(𝑡,𝜃)}2 /𝑡𝑟]

𝐸{𝑅(𝑡,𝜃) /𝑡𝑟}
 =

∫ {𝑅(𝑡,𝜃)}2𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

∫ 𝑅(𝑡,𝜃)𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

=
∫ 𝑒

− 
2(𝑝𝑡+𝑞𝑡2)

𝜃 𝜃−(𝜈+𝑟+1)𝑒
−

(𝑡𝑟+𝜇)
𝜃 𝑑𝜃

∞
0

∫ 𝑒
− 

(𝑝𝑡+𝑞𝑡2)
𝜃 𝜃−(𝜈+𝑟+1)𝑒

−
(𝑡𝑟+𝜇)

𝜃 𝑑𝜃
∞

0

 = 
{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈

{(𝑡𝑟+𝜇)+2(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈 

So, 

�̂�𝐷𝐺(𝑡, 𝜃) =
{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈

{(𝑡𝑟+𝜇)+2(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈     (3.9) 

7. Under the  Minimum Expected Loss (MELO) Function, the Bayes estimate of 𝑅(𝑡, 𝜃) = 𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃  , 𝛼 being 

known,  denoted by �̂�𝑀(𝑡, 𝜃)  , is given by, 

𝑅(𝑡, 𝜃) = 𝑒− 
(𝑝𝑡+𝑞𝑡2)

𝜃  , denoted by �̂�𝑀(𝑡, 𝜃)  , is given by, 

�̂�𝑀(𝑡, 𝜃)   =
𝐸(𝜃−2𝑅(𝑡,𝜃) /𝑡𝑟)

𝐸(𝜃−2 /𝑡𝑟)
 =

∫ 𝜃−2𝑅(𝑡,𝜃)𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

∫ 𝜃−2𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

=
∫ 𝑒

− 
(𝑝𝑡+𝑞𝑡2)

𝜃 𝜃−(𝜈+𝑟+3)𝑒
−

(𝑡𝑟+𝜇)
𝜃 𝑑𝜃

∞
0

∫ 𝜃−(𝜈+𝑟+3)𝑒
−

(𝑡𝑟+𝜇)
𝜃 𝑑𝜃

∞
0

 = 
(𝑡𝑟+𝜇)𝑟+𝜈+2

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈+2
 

So, 

�̂�𝑀(𝑡, 𝜃) =
(𝑡𝑟+𝜇)𝑟+𝜈+2

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈+2
  (3.10) 

8. Under the Exponentially Weighted Minimum Expected Loss (EWMELO) Function, the Bayes estimate of 

𝑅(𝑡, 𝜃) = 𝑒− 
(𝑝𝑡+𝑞𝑡𝛼)

𝜃 , 𝛼 being known, denoted by �̂�𝐸𝑊(𝑡, 𝜃)  , is given by, 

�̂�𝐸𝑊(𝑡, 𝜃)   =
𝐸(𝜃−2𝑒−𝑎𝜃−1

𝑅(𝑡,𝜃) /𝑡𝑟)

𝐸(𝜃−2𝑒−𝑎𝜃−1
 /𝑡𝑟)

 =
∫ 𝜃−2𝑒−𝑎𝜃−1

𝑅(𝑡,𝜃)𝜋(𝜃 /𝑡𝑟)𝑑𝜃
∞

0

∫ 𝜃−2𝑒−𝑎𝜃−1
𝜋(𝜃 /𝑡𝑟)𝑑𝜃

∞
0

=
∫ 𝑒

− 
(𝑝𝑡+𝑞𝑡2)

𝜃 𝜃−(𝜈+𝑟+3)𝑒
−

(𝑡𝑟+𝜇+𝑎)
𝜃 𝑑𝜃

∞
0

∫ 𝜃−(𝜈+𝑟+3)𝑒
−

(𝑡𝑟+𝜇+𝑎)
𝜃 𝑑𝜃

∞
0

 = 

(𝑡𝑟+𝜇+𝑎)𝑟+𝜈+2

{(𝑡𝑟+𝜇+𝑎)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈+2 

So, 
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�̂�𝐸𝑊(𝑡, 𝜃) =
(𝑡𝑟+𝜇+𝑎)𝑟+𝜈+2

{(𝑡𝑟+𝜇+𝑎)+(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈+2   (3.11) 

 

The Bayes risk of a Bayes estimator �̂� of 𝑅(𝑡, 𝜃),corresponding to a given loss function 𝐿(𝜃, 𝛿) is given 

by,𝐵(�̂�) =  𝐸{𝐿(𝑅(𝑡, 𝜃), �̂�)}.Bayes risks of Bayes estimators corresponding to four loss functions considered 

are in the table as follows: 

 

3.2 BAYES RISKS OF VARIOUS BAYES ESTIMATES OF 𝑹(𝒕, 𝜽) 
S.No. Loss 

Function 

Bayes Estimate Bayes Risk 

1. SELF 
�̂�𝐵(𝑡, 𝜃) =

(𝑡𝑟 + 𝜇)𝑟+𝜈

{(𝑡𝑟 + 𝜇) + 𝑙𝑛(1 + 𝑡𝛽)}𝑟+𝜈
 𝐵(�̂�𝐵) =

(𝑡𝑟+𝜇)𝑟+𝜈

{(𝑡𝑟+𝜇)+2(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈 −

(𝑡𝑟+𝜇)2(𝑟+𝜈)

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}2(𝑟+𝜈) 

 2. DLF 
�̂�𝐷𝐺(𝑡, 𝜃) =

{(𝑡𝑟 + 𝜇) + 𝑙𝑛(1 + 𝑡𝛽)}𝑟+𝜈

{(𝑡𝑟 + 𝜇) + 2𝑙𝑛(1 + 𝑡𝛽)}𝑟+𝜈
 𝐵(�̂�𝐷𝐺) = 1 −

(𝑡𝑟+𝜇)(𝑟+𝜈){(𝑡𝑟+𝜇)+2(𝑝𝑡+𝑞𝑡𝛼)}𝑟+𝜈

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼)}2(𝑟+𝜈)  

3. MELO 
�̂�𝑀(𝑡, 𝜃) =

(𝑡𝑟 + 𝜇)𝑟+𝜈+2

{(𝑡𝑟 + 𝜇) + 𝑙𝑛(1 + 𝑡𝛽)}𝑟+𝜈+2
 

𝐵(�̂�𝑀) =
(𝑡𝑟+𝜇)(𝑟+𝜈)𝛤(𝑟+𝜈+2)

𝛤(𝑟+𝜈)
{

1

{(𝑡𝑟+𝜇)+2(𝑝𝑡+𝑞𝑡𝛼)}(𝑟+𝜈+2) −

(𝑡𝑟+𝜇)(𝑟+𝜈+2)

{(𝑡𝑟+𝜇)+(𝑝𝑡+𝑞𝑡𝛼) }2(𝑟+𝜈+2)}     

4. EWMELO �̂�𝐸𝑊(𝑡, 𝜃)

=
(𝑡𝑟 + 𝜇 + 𝑎)𝑟+𝜈+2

{(𝑡𝑟 + 𝜇 + 𝑎) + 𝑙𝑛(1 + 𝑡𝛽)}𝑟+𝜈+2
 

𝐵(�̂�𝐸𝑊) =
(𝑡𝑟+𝜇)(𝑟+𝜈)𝛤(𝑟+𝜈++𝑎+2)

𝛤(𝑟+𝜈)
{

1

{(𝑡𝑟+𝜇+𝑎)+2(𝑝𝑡+𝑞𝑡𝛼)}(𝑟+𝜈+2) −

(𝑡𝑟+𝜇+𝑎)(𝑟+𝜈+2)

{(𝑡𝑟+𝜇+𝑎)+(𝑝𝑡+𝑞𝑡𝛼) }2(𝑟+𝜈+2)}     
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