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ABSTRACT

This paper deals with the Bayesian and classical estimation of parameter 6 of a distribution known as the
Weibexpo Distribution .The estimation has been performed for type 11 censored samples. In classical setup
the Maximum Likelihood Estimator (MLE) and the Unique Minimum Variance Unbiased (UMVU) Estimator
of 6 and the Reliability of the distribution have been obtained. In the Bayesian setup estimates of 6 and the
reliability of the distribution have been obtained .The estimation has been performed by taking a Natural
Conjugate prior distribution for 6 and four different types of loss functions. On the part of loss functions, the
Squared Error Loss Function (SELF), DeGroot Loss Function (DLF), Minimum Expected Loss (MELO)
Function and Exponentially Weighted Minimum Expected Loss (EWMELO) Function have been considered.
Bayes Risks of Bayes estimators corresponding to four loss functions have also been obtained.

Keywords: Weibexpo Distribution, Maximum Likelihood Estimator, Unique Minimum Variance Unbiased
Estimator, Reliability, Type Il Censoring Bayes Estimator, Squared Error Loss Function (SELF), DeGroot
Loss Function (DLF), Minimum Expected Loss (MELO) Function and Exponentially Weighted Minimum
Expected Loss (EWMELO) Function.Bayes Risk.

1.INTRODUCTION

Consider a system consisting of (p + q) components connected in series. Where,p > 0,q = 0,.Let X; be the
life of the i component i=1,2.. p+q.For i =12...p,let the distribution of X; has exponential
distribution with common probability density function given by,

le75.ifx>0,0>0

f(x, 0) = {9 (1.1)

0, Otherwise
t
Inthiscase, P(X; >t)=e®,i=12...p
While for the remaining q components distribution of X; has Weibull distribution with common probability density
function given by,

(04
ax®"1 _X

g(x,a,0) = { 5 e 0,ifx>0,0>0,a>0 (1.2)
0, Otherwise

t
Inthiscase, P(X; >t) =e 0 ,i=p+1,p+2...p+q
LetY be the life of the system. Since the components are connected in series,Y = Mininmum (X;
, X2,... Xp+q)-The reliability of the system, denoted by R(t) = P(Y > t),is given by,
t+qt®

R(ta,8) = P(Y > 1) = [[POP(X; > ) = 6 (L3)
The probability density function of Y is given by, h(y, a, 0) = —R'(y, a, 6) and so,

(p+qay®1) _®y+ay"
h(y,a,9)={Te 0 ,1fy>0,9>0,0(>0 (14)

0, Otherwise
Forp =1 and q = 0,(1.4) reduces to exponential distribution with parameter 6 while forp=0and q=1
,(1.4) reduces to Weibull distribution with shape parameter o and scale parameter 6. Remark :1.1t is to be
noted that (1.4) always represents a probability density function even ifp > 0 ,q > 0 are not necessarily
positive integers. Forp = 0,q = 1 and a = 2,(1.4) reduces to Rayleigh distribution
Remark :2.1t is to be noted that the random variable U = (pY + qY%) has the same probability density function
given by (1.1) and so,
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hy(u,0) = {%e_é,ifu >00>0
0, Otherwise

We call the distribution having p. d. f given by (1.4) as Weibexpo Distribution.

In this paper, classical and Bayesian procedure has been adopted to obtain estimates of 8 and R(t, «, 6),when

a is known. The estimation has been performed under type 11 censoring. The Maximum Likelihood Estimator

(M.L.E.) and Unique Minimum Variance Unbiased Estimator (UMVUE) have been obtained. In Bayesian

framework, estimation has been performed under the assumption of a Natural Conjugate Prior density for ©.

The loss functions considered are as under:

1.The Squared Error Loss Function (SELF): In this case, the loss function denoted by L(9, 6),

IS given by,

L(6,8) = (6 —68)% (1.6)

This loss function is symmetric and unbounded. It suffers from the drawback of giving equal weights to

underestimation as well as to overestimation.

2. DeGroot Loss Function (DLF): In this case

L(6,8) = 672(0 — 6)? 1.7)

This loss function, introduced by DeGroot (2005), is asymmetric. It gives more weight to underestimation

than to overestimation.

3.Minimum Expected Loss (MELO) Function: In this case,

L(6,8) =072(0—-68)2 (1.8)

This loss function is asymmetric and bounded. In this case weight due to underestimation and overestimation

is changed by a factor 8~2 as compared to the SELF. This loss function was used by Tummala and Sathe

(1978) for estimating reliability of certain life time distribution and by Zellner (1979) for estimating functions

of parameters in econometric models.

4. Exponentially Weighted Minimum Expected Loss (EWMELQO) Function

w(6,8) = 6727287 (9 — §)2 (1.9)

This loss function is asymmetric and bounded. In this case weight due to underestimation and overestimation

is changed by a factor e™a07" 35 compared to the MELO and by a factor 0267307 55 compared to the SELF.

This type of loss function was used by the author (1997) for the first time in his work for D.Phil. SELF, MELO

and EWMELO were used by Singh, the author, (1999) in the study of reliability of a multicomponent system

and (2010) in Bayesian Estimation of the mean and distribution function of Maxwell’s distribution. Recently,

the author again used these loss functions in Bayesian estimation of function of the unknown parameter 6 for

the Modified Power Series Distribution (MPSD) (2021) ,for estimating Loss and Risk Functions of a

continuous distribution (2021),for estimating moments and reliability of Geometric distribution. In addition

to these loss functions, the author has used Degroot loss function while estimating the unknown parameter

and reliability of Burr Type XII distribution.

The results obtained in this paper give classical and Bayesian estimates of unknown parameter 6 for a number

of distributions as particular cases as under:

Forp = 1 and q = 0 results obtained for the MLE and UMVUE coincide with that given by Epstein and

Sobel (1953) for the exponential distribution while under SELF the Bayes estimates coincide with that given

by Bhattacharya (1967) corresponding to natural conjugate prior.Under MELO we get the result for

exponential distribution similar to that as given by Tummala and Sathe (1978). For p = 0 ,q = 1 and known

value of o ,we get results for MLE and UMVUE of Weibull distribution while under MELO the Bayes

estimates are similar to that given by Tummala and Sathe (1978).For p = 0,q = 1 and o = 2 results obtained

for the MLE and UMVUE coincide with that of Rayleigh distribution while under SELF the Bayes estimates

are similar to that given by Bhattacharya and Tyagi (1990) for the natural conjugate prior.

(1.5)

2.ESTIMATION OF 6 AND R(t, a,8) UNDER type I CENSORING
Let Yy, Yz, Ys3,... Y, be a random sample of size n and Y4y < Y3y < Y3y <...< Y(n_1) < Yn) be the order

statistic corresponding to this random sample having p.d.f given by (1.4). In case of type Il censoring, n items
are placed on test and the test is terminated after first ‘r’ (r pre-specified) failures. Thus, only r ordered
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observed values of Y1) < Y5y < Y(3) <...< Y1) < Y are recorded. For observed values y 1y < y(z) <
Y3 <---< Y- 1) < y(r).the likelihood function, when a is known ,denoted by L(6) ,is given by,

L(B) = k6~ e"F (2.1)

Where, k is function of n, p, g, r and y;) i=1,2...r and does not contain 6.

tr = 2isUg + (n—nuyy (2.2)

Where,U(i) = PYq) + qyg) J=12...r.

t, is an observed value of the statistic T, given by,

Tr = Z{:l U(l) + (n — r)U(r)

Where,U(i) = pY(l) + qY(Ol() J=12...r (23)

t
1(6) = InL(8) = —rlnb _Er

o) -r t,
0 6 62
Solvmg 61(9) = 0 and denoting the solution by 9 , we have,
== (2.4)

T
Thus, the Maximum Likelihood Estimate of 6 is = tr—r.The corresponding estimator is, %

The estimator% is also UMVU and efficient for 8.This is proved as under:

Thep.d.fof V = % is derived and is given by,
1 ryr-1 -=
42(0,8) = Jrn @V
0, otherwise.

|fv>09>0 (2.5)

PROOF
If Y1y < Yoy < Y3y <...< Y1) < Yz is the order statistic corresponding to a random sample of size n

having p.d.f given by (1.4) then, Uy < Uy < +++ < Uy constitute an order statistic of size n corresponding
to a random sample of size n from the distribution specified by (1.5),where, Uy = pY;) + qY(‘g‘).Since U=

n(pt+qt%)

(pY + qY%) has the p.d,f. given by (1.5).1t is to be noted that P(Y;) > t) =e” = 6 =P(Uy) >pt+
qt®).The joint p.d.f. of , Uy < Upy < -+ < Uy ,is given by,

h. (uu)’u(z)»u(z)'--  Ur-1), UG, 0)

{Hr 1h1(u(l),9)}{R(u(r) 6)}(n ) lf 0< u(l) < u(z) < u(3) < < u(T—l) < U,(r) < 00; 6>0

(n r)'

( +1) —r
= {[I.,(—=)} e s
Let L, = U(1) pYa + qY(O{),
Ll' = U(l) - U(i—l)’ i=2,3,4.....r. Then,
i=(n—i+ DL =Y Uy +(n—r)Up) =T
The Jacobian of the transformation from (U(y), U2y, Ugsy,. - .Ur—1y, Uy) 10 (Ly, Ly,.... L) is1.S0 the joint p.
d.f.of Ly, L,,.... L. say, g. (L4, Ly,.... r) IS given by,
. Z (n—-i+1);
r (n—i+1) 11—
g1l by, L) = izl( 0 ) €
0, otherwise
This shows that Ly, L,,.... L.are mutually independent and for each i, V; = (n —i + 1)L; has exponential

distribution having p. d. f.

V<< L<lg<<l_; <l <o

1 _w
He 0,ifv;>0,0>0

0, otherwise
Hence, V = = = 2ot Dl Zij % has p. d. f.

r

gi(vi; 9) =
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_(_)r r— 1
g>(v,0) =4{rm
0, otherwise.

E(V)=E (%) fooovgz(v, 0)dv =06
This shows that% is an unbiased estimator of 4.
Also, Var(2) = Var(V)= [ v? g, (v, 0)dv — 62 = "r_z

Since, the joint p. d. f. of Y1) < Y5 < Y(3) << Yooy <Yy is given by,
(n— l+1)(p+aqym)
[Ti=C )} e

|fv>0 6 >0.

£-(yy Y@ Y@y 0 V-1, Y, 0) =

ki(tr, 0). k2 (Y1) Y23 Vi), ---»y(r—l)fy(r))
Where, k,(t,,0) =07 "e 5

k2 (Y1) Y@ Y(3)» o0 Yir-1), y(r)) = {ITi=1( )}

Hence, by virtue of factorization criterion, T,. is suff|C|ent statistic for 6. Since, T,.~G (r, 8) and the family of
Gamma distribution, with known parameter r and unknown parameter 6 ,is complete, T;. is complete sufficient

statistic for 8.Hence,by virtue of Rao-Blackwell -Lehman-Scheffé Theorem, % ,is Unique Minimum Variance
Unbiased(UMVU) estimator of 6.

Oll+1XP+aQYQﬂ

Since,

olnf.(yay Yey Y@ - Y- Ya)0) _ T LI

a0 0 62%r

0*Inf.(ya) Y@ Y@y - Ya-1p Yy 0) _ T 2ty

2 ) 06?2 02 0371
a4Inf, YY) Y@yYa- ),Y(r),e _ r 2r Ty r
_E{ ; 26932 : }__ﬁ-i_ﬁE(r) 62"
1 62

Hence, the Cramér-Rao Lower bound =

362

_E{aZan *(Y(l)'Y(Z)'Y(s)'---'

Y(r—l)JY(r)J")} r

Since Var( 0) = —So the Variance of ~ attains the Cramér-Rao Lower bound and therefore, —’ IS an
efficient estlmator of 0.
Consider random variables,
Q1, Qz,-..- Qr asfollows: Q; = o ,fori=12...r—1
i=1"1

and Qr = ?=1 Vl’
The transformations q; = and q, = Y=, v

L 1Vi
map the set A ={(v, vy, ... ):v; >0,i =1,2...r} onto the set B=1{(q1,92 -9-):0=<gq;,i=

1,2,..r—1;,0<q, < ©,q; + q; + - + q,_1 < 1}.The inverse transformations are,
vi=qq,i=12..r—1 and v, =q,(1 —q; —q, — - — q,_1).The Jacobian of this transformation,
denoted by J ,is given by,

qr0....q¢

0g,...q2

0(v1,v3,..0y) 00 qr--q3
) = ity = b=1-q1—q2— " —qr-1).
—qr — qr--b

Or.
J=a "
The joint p. d. f. of Q4, Q,,.... @, denoted byg.(q1, gz, - q,0)
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—1,,T—1 -Ir
g*(ql, qz, - qr‘e):{e ur e ) 9, lf(Ch; qz - QT) €B
0, otherwise
Or,

(r-1)! ,_ _q M
9.(q1.92 - q 9):{ ;(r) 07 e 0, if Qo ar) € B
* ) yeeeYr,

0, otherwise

This shows that (Qq, Q3,.... Q,_1) Is independent of Q,- and Q,
has p. d. f.

1 -1 r—1 - ; <
g*l(Qrﬂ):{r(r)e ¢r e 0,if0sqr <o
0, otherwise
The random vector (Q;, Q,,.... @,_1) has the p. d. f. of Dirichlet distribution and is given by,
r—1%if0<q;,i=12,..tr— 1, +q, ++q_1 =1
92-(41. 42, ""qr_l’):{(O, oth)em{ise K e o

The random vector (Q4, Q,,.... Q,_,) has the p. d. f. of Dirichlet distribution and is given by,
1-q1—q2—q3—qr—2

93:(q1, 92, o Gr_2) = (r — 1)!f dqgr—1
0

=r-D'1-q¢1—q2—93 — " qr—2)
Similarly,
The random vector (Q4, Q,,.... Q,_3) has the p. d. f. of Dirichlet distribution and is given by,

1-q1—q2—q3—Qr
9a(Qu, Qs - Grz)=(r = DI [T gy — gy —q3 — - qy_3)d gy,

_ 1)
= (1=q1—q2=q3 = Gr—2)*
Proceeding this way ,we get the p. d. f of the random variable Q, ,as follows:
_[(r-1DA-q)%if0<q =1
gr-(a) = {O, otherwise
This shows that Q, has Beta (1,r —1) distribution. Since,the random vector (Qq,Q5,....Q,_1) IS

independent of Q,. In particular Q,, = X7, V; is independent of Q; = YLV
i=1"1

Since, V; = nL; = nUyhasp d. f.

1
g1(vy,0) = e 91fv1>0t9>0
O,otherWLse
_ (pt+qt®
P(Vy > pt+ qt*) = P{(nU(y) > pt + qt*)} = e 6 = R(t,0)

Consider the statistic V, defined as follows:
{1, if Vi > pt+ qt“
V.= ;
0, otherwise
(pt+qt%)

EWV)=1.P(V; >pt+qtY))+0.P(V; <pt+qt*)=e 6 =R(t0).
So V, is an unbiased estimator of R(t, 8).By virtue of Rao-Blackwell-Lehman-Scheffé theorem,p(V,) =
(pt+qt®)

E(V, /Xi=1 Vi) is UMVU estimator of R(t,0) = e~ o
Now, (V) = E(V. /iy VD) = P(Vy > pt +qte/ Ty V) = P (52

t+qt%
Zrlvl ; 1 /Z ) P<Q1>

;ﬂ*q; /Y ) (r = 1) [hrae(1 — qy) ~2dq, =(1 — 2H9E £4yr-1 Thus the UMVU estimator of R(t, 6) =
i=1 Zr_—V l 1 Vi
(pt+qt“)
e ,denoted by , R(t, 8) is given by,
_ 1—PHNr-1 it + qt® <
R(t’9)={< S i Pttt < T
0,if pt + qt“ = Yi=1Vi

Since, X, Vi =T, = X1 Uy + (n = ) U
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pt + qt“
T,
0,if pt+qt*>T,

(1- )Y Lif pt + qt* <T,

R(t,0) =

3.BAYESIAN ESTIMATION
The Bayesian estimation of 6 and R(t, 8) has been obtained by taking the Inverted gamma distribution as the
prior probability distribution for 6 and three different types of loss functions. The probability density function
of the prior distribution for 8,denoted by m(8),is given as follows:
v U

(6)= %9_("“)(5, if0<f<oo,uv>0 (3.)

0, otherwise
Where, u and v are known.
Since, in case of type Il censoring, the likelihood function, denoted by L(8) ,is given by,

tr
L(O)=kOTe o (3.2)
Where, k is function of n, p, g, and y;i=1,2...r and does not contain 6.
The posterior distribution of 6,denoted by (8 /t,),is given by.

L(6)(6)
@ /t,) = o———
(6 /t) INIOLIOLT
_(tr+p)
9—(V+T+1)e 0 _ (tr+#)r+v _(V+r+1)e_(tr+ﬂ)
f:° 9—(v+r+1)e—(trgu)d9 r(r+v)
Thus,
(tr+ﬂ)r+v (tr+p)

7'[(9 /tr): r(r+v) 0_(V+r+1)e_ o 'lf 0<f<o U,V >0

0, otherwise .
It is to be noted that the posterior distribution (6 /t,.) is also the probability density function of an Inverted
gamma distribution. So m(6) is a Natural Conjugate prior probability density for 6.
1.Under the Squared Error Loss Function given by, L(8,8) = (8 — §)? , the Bayes estimate of ,denoted by
05 , is given by,
~ I TV o _tr+w
Bs = E(0 /t,) =[;” 0m(0 /t,)d6 = ErZ [ 9=0*ne™"adg= (rhL
So,

A _ (trt+w) :
B = D) provided, r +v > 1 (3.4)

2.Under the DeGroot Loss Function given by ,L(8,8) = §72(6 — §)?, the Bayes estimate of 8,denoted by
0, , is given by,
A E0%/ty) _Jy 0%m(0/t)d0 _ (ty+p)
DG T B /ty) [ om0 /t)ds  (r+v-2)
3.Under the Minimum Expected Loss (MELO) Function, given by, L(8,8) = 872(8 — §)?
sthe Bayes estimate of 6,(also known as the Minimum Expected Loss (MELO) Estimate, denoted by 8, , is
given by,
5. _EGT/t) _ Jo 6716 /tr)d0 _ (tr+w)
M ™ E@72/ty) 207210 /ty)d8 ~ (r+v+1)

A (trtw)
O = (r+v+1) (3'6)

4.Under the Exponentially Weighted Minimum Expected Loss (EWMELO) Function, given by, L(0,8) =
6-2¢~297" (9 — §)2, the Bayes estimate of & ,known as the Exponentially Weighted Minimum Expected Loss
(MELO) Estimate, denoted by 85y , is given by,

EO~1e=%0 " /t) [ 07T % n(0 /t)d0  (t,+u+a)

E(0-2e=a0""/t,)  [©0-2e=a07 (0 /t;)d0  (r+v+1)

Jprovided, r +v > 2 (3.5

éEW =
So,
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A _ (tytuta)

Opw = (r+v+1) (3.7)

The Bayes risk of a Bayes estimator 6 of ,corresponding to a given loss function L(8, §) is given by,B(B) =
E{L(6,8)}.Bayes risks of Bayes estimators corresponding to four loss functions considered are in the table

as follows:

3.1BAYES RISKS OF VARIOUS BAYES ESTIMATES OF 6

S.No. | Loss Function Bayes Estimate Bayes Risk

1 SELF &+ 5y = (rtw?
B= m 565 = (r+v=-1)?(r+v-2)

2. DLF s _ G+ B(fpe) = ——
DG = r+v-2) e

3. MELO N G D) B(Oy) = —
v = (r P 1) (r+v+1) )

_ R t+p+ 3 )"
4 EWMELO o = ( rTH a) B(ng) = o+ :a;—rl:—)V(r+v+1)
(r+v+1) i

It is to be noted that B(Bgy,) < B(8y) < B(Bpg).
_ (pt+qt%

5.Under the Squared Error Loss Function, the Bayes estimate of R(t,0) = e 6, a being known,
denoted by Ry (t,0) , is given by,

P —(® (tr+)™tV o0 _t+at®) _(tr+) _
Rp(t,0) = E{R(t,60)/t,} —fo R(t,0)m(6 /t,)dO = e fo e o @ trtle™ 5 4@ =
(tr+)™*Y
{{tr+1)+(pt+qt Oy +v
So,
~ _ (tr+#)r+v
Re(t,0) = (38
(pt+qt%)
6. Under the DeGroot Loss Function the Bayes estimate of R(t,6) =e~~ ¢ , a being known, denoted
by Rp(t,0) , is given by,
e o _2mt+qt?) (trt)

R\ (t 9) _ E[{R(t,g)}z /tT] _f() {R(t,g)}zﬂ'(g /tr)de _ fO e ] 9—(V+T+1)e ] da _ {(tr+,u)+(pt+qta)}r+v

DG\%“» E{R(t,0) /t;} f:o R(t,0)m (0 /ty)do f(;,oe_(pt"'eqtz)9_(v+r+1)e_(tr;-u)d9 {(tr+u)+2(pt+qte)yr+v
So,

5 _ {tr+m)+(t+qteyrty
Rpg(t,6) = {(tr+1)+2(pt+qt o))+ (3.9)
(pt+qt%)

7. Under the Minimum Expected Loss (MELO) Function, the Bayes estimate of R(t,6) = e~ ¢ , a being
known, denoted by Ry, (t,6) , is given by,

(pt+qt?) . L
R(t,0) =e & ,denoted by Ry, (t,8) , is given by,

(pt-l-eqtz) (tr+u)

Ru(t,0) = E(g—zR_(t,g) /tr) _Jo B:R(t,e)n(e /tr)de _ Jy e 6~0HTe™ 0 ap _ (tr+u)THVH2

E(672 /ty) [ 6-2m(6 /tr)a6 fooog_(v+r+3>e-“r;“>d9 {(Er+ i)+ (pL+qte))r+v+2
So,
Ru(t,0) = — 0 (3.10)

{(tr+m)+(pt+qta)}r+v+2
8. Under the Exponentially Weighted Minimum Expected Loss (EWMELO) Function, the Bayes estimate of

_ (pt+qtY

R(t,0) =e 5, a being known, denoted by Ry, (t,0) , is given by,

—2_—ap~1 0, 5 _go-1 o _ Pt+qt?) —(vAr+3) _(trtp+a)
B (t,6) = E(0~2e~ %" R(£,0) /t;) _J, 67 % R(tO)T(O /tr)dd  [Te 0 6 e 6 do _
EW\YH - o _aqp-1 - 0 5 _g0-1 - tr+u+ -
E(§72e~907" /t;) Iy 6-2e=a0" (6 /t,)a6 f(;"’e-(V+r+3)e‘(T ZIag
(tr+u+a) V2
{(tr+u+a)+(pt+qt®)yr+v+2
So,
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ﬁEw(t; 9) =

(tr+ﬂ+a)r+v+2
{(tr+u+a)+(pt+qt®)yrtvz

(3.11)

The Bayes risk of a Bayes estimator R of R(t,8),corresponding to a given loss function L(8,8) is given
by,B(R) = E{L(R(t, 6), R)}.Bayes risks of Bayes estimators corresponding to four loss functions considered

are

3.2

in the table as follows:

BAYES RISKS OF VARIOUS BAYES ESTIMATES OF R(t, 0)

S.No.

Loss Bayes Estimate Bayes Risk
Function

¥ R T+V
SELF &+ B(Rp) = (tr+1)

Rp(t,0) = tr+Hp)+2(pt+qt )}ty
’ (& + W) + In(1+ )Y+ (A

{(tr+)+(pt+qt @)}y

DLF ﬁ (t 9) _ {(tr + ‘Ll) + ln(l + tﬁ)}r+v B(ﬁDG) —q_ (tr+“)(T+V){(tr+ﬂ)+2§pt2‘;rit:;‘)}r+v
PETI T, + W) + 2In(1 + tA)y Y ((tr+m)+(pt+qt®)}

MELO &+ B(Ry) =

Rt 0) = (0 T + (1 + Yy v )T revi2) o : -
r(r+v) {(tr+w)+2(pt+qt*)}T+v+2)

(tr+1) (r+v+2)
G+ (peeaed e

EWMELO Rew (t,0) B(Rgw) =
(t, +u+ a)r+v+2 ) I M (r v+ +a+2) 1

= { -
B\ +V+2 r(r+v) {(tr+u+a)+2(pt+qt®)}r+v+2)
{(tr + u + a) + ln(l +t )} (tr+u+a)(r+v+2)

{(tr+u+a)+(pt+qt®) }2<r+v+2)}
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