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ABSTRACT 

 

Role of optimization in engineering design is prominent one with the advent of computers. Optimization has 

become a part of computer aided design activities. It is primarily being used in those design activities in which the 

goal is not only to achieve just a feasible design, but also a design objective. In most engineering design activities, 

the design objective could be simply to minimize the cost of production or to maximize the efficiency of the 

production. An optimization algorithm is a procedure which is executed iteratively by comparing various solutions 

till the optimum or a satisfactory solution is found. In many industrial design activities, optimization is achieved 

indirectly by comparing a few chosen design solutions and accepting the best solution. This simplistic approach 

never guarantees and optimization algorithms being with one or more design solutions supplied by the user and 

then iteratively check new design the true optimum solution. There are two distinct types of optimization 

algorithms which are in use today. First there are algorithms which are deterministic, with specific rules for 

moving from one solution to the other secondly, there are algorithms which are stochastic transition rules. An 

important aspect of the optimal design process is the formulation of the design problem in a mathematical format 

which is acceptable to an optimization algorithm. Above mentioned theory (tasks) involve either minimization or 

maximization of an objectives. Mathematically programming techniques are useful in finding the minimum of a 

function of several variables under a prescribed set of constraints. Stochastic process techniques can be used to 

analyze problems described by a set of random variables having known probability distributions statistical 

methods enable one to analyze the experimental data and build empirical models to obtain the most accurate 

representation of the physical situation. The purpose of the optimization is to determine such a set of the cutting 

conditions v (cutting speed), f (feed rate), a (depth of cut), that satisfies the limitation equations and balances the 

conflicting objectives. Current study presents successful optimization using Hook’s and Jeeves method for metal 

cutting process with the help of MATLAB R2014a(version 8.3). 

Keywords: Optimization, Minimization, Maximization, Deterministic, stochastic transition rules, Algorithm, 

MATLAB R2014a (Version8.3). 

 

RELEVANCE 

 

In this paper extensive literature review has been referred to understand current status of various optimization 

techniques and their significance. Optimization theories are very much prominent and important aspect in 

industrial arena. Hooke and Jeeves optimization algorithm is mainly identified because of its simplicity to find best 

optimum solution. This algorithm provides the exact actual results from the bunch of iterations. Along with which, 

the use of this kind of algorithm to metal cutting operation provides new dimensions in Mechanical Design 

engineering by means of effective utilization of 3M
s  

i.e. Manpower, materials and machines. 
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OPTIMAL DESIGN PROCEDURE: 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. A flow chart of the Optimal design Procedure 

Following are the present practices for application of the “Hooke and Jeeves Direct search solution method” in 

Mechanical Design Engg. Certain problems involve linear terms for constraints and objective function but certain 

other problems involve non-linear terms for them. In some problems, the terms are not explicit functions of the 

design variables, there does not exist a single optimization algorithm which will work in all optimization problems 

equally efficiently. In order to use optimization algorithms in engineering design activities, the first task is to 

formulate the optimization problem. The formulation process begins with identifying the important design 

variables that can be changed in a design. The other design parameters are usually kept fixed. Thereafter, 

constraints may arise due to resource limitations such as deflection limitations, strength limitations, frequency 

limitations, & other. Constraints may also arise due to codal restrictions that govern the design. The next task is to 

formulate the objective function which the designer is interested in minimizing or maximizing the final task of the 

formulation phase is to identify some bounding limits for the design variables [1]. Many engineering optimization 

problems contain multiple optimum solutions among which one or more is the absolute min. or max. Solutions 

these optimum solutions are known as global optimal solutions and other optimum solutions are known as local 

optimum solution. The rudimentary information of success or failure is utilized by combining it into a “pattern” 

which indicates a probable direction for a successful move. As set up each pattern move is followed by a sequence 

of exploratory moves which continually revise the pattern.  

 

 

 

Need for Optimization 

Choose design variables 

Formulate objective function 

Set up variable bounds 

Formulate constraints 

Choose an optimization 

algorithm 

Obtain solution (S) 
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DIRECT SEARCH METHODS  

Introduction: 
We use the phrase “direct search" to describe sequential examination of trial solutions involving comparison of 

each trial solution with the “best" obtained up to that time together with a strategy for determining (as a function of 

earlier results) what the next trial solution will be. The phrase implies our preference, based on experience, for 

straightforward search strategies which employ no techniques of classical analysis except where there is a 

demonstrable advantage in doing so. [1] to a modern reader, this preference for avoiding techniques of classical 

analysis except where there is a demonstrable advantage in doing so" quite likely sounds odd. After all, the success 

of quasi-Newton methods, when applicable, is now undisputed. But consider the historical context of the remark 

by Hooke and Jeeves. Hooke and Jeeves' paper appeared ve years before what are now referred to as the Armijo 

Goldstein Wolfe conditions were introduced and used to show how the method of steepest descent could be 

modified to ensure global convergence. Their paper appeared only two years after Davidon's unpublished report on 

using secant updates to derive quasi-Newton methods, and two years before Fletcher and Powell published a 

similar idea in The Computer Journal. So in 1961, this preference on the part of Hooke and Jeeves was not without 

justification. Forty years later, the question we now ask is: why are direct search methods still in use? Surely this 

seemingly hodge-podge collection of methods based on heuristics, which generally appeared without  a large 

extent direct search methods have been replaced by more sophisticated techniques. As the field of numerical 

optimization has matured, and software has appeared which eases the ability of consumers to make use of these 

more sophisticated numerical techniques, many users now routinely rely on some variant of a globalized quasi-

Newton method. Yet direct search methods persist for several good reasons. First and foremost, direct search 

methods have remained popular because they work well in practice. In fact, many of the direct search methods are 

based on surprisingly sound heuristics that fairly recent analysis demonstrates guarantee global convergence 

behavior analogous to the results known for globalized quasi-Newton techniques. Direct search methods succeed 

because many of them including the direct search method of Hooke and Jeeves can be shown to rely on techniques 

of classical analysis in ways that are not readily apparent from their original specifications. Second, quasi-Newton 

methods are not applicable to all nonlinear optimization problems. Direct search methods have succeeded when 

more elaborate approaches failed. Features unique to direct search methods often avoid the pitfalls that can plague 

more sophisticated approaches. Third, direct search methods can be the method of first recourse, even among well-

informed users. The reason is simple enough: direct search methods are reasonably straightforward to implement 

and can be applied almost immediately to many nonlinear optimization problems. The requirements from a user 

are minimal and the algorithms themselves require the setting of few parameters. It is not unusual for complex 

optimization problems to require further software development before quasi-Newton methods can be applied (e.g., 

the development of procedures to compute derivatives or the proper choice of perturbation for nit difference 

approximations to gradients). For such problems, it can make sense to begin the search for a minimize using a 

direct search method with known global convergence properties, while undertaking the preparations for the quasi-

Newton method. When the preparations for the quasi-Newton method have been completed, the best known result 

from the direct search calculation can be used as a hot start" for one of the quasi-Newton approaches, which enjoy 

superior local convergence properties. Such hybrid optimization strategies are as old as the direct search methods 

themselves. We have three goals in this review. First, we want to outline the features of direct search that 

distinguish these methods from other approaches to nonlinear optimization. Understanding these features will go a 

long way toward explaining their continued success. Second, as part of our categorization of direct search, we 

suggest three basic approaches to devising direct search methods and explain how the better known classical 

techniques t into one of these three camps. Finally, we review what is now known about the convergence 

properties of direct search methods. The heuristics that first motivated the development of these techniques have 

proven, with time, to embody enough structure to allow in most instances analysis based on now standard 

techniques. We are never quite sure if the original authors appreciated just how reliable their techniques would 

prove to be; we would like to believe they did. Nevertheless, we are always impressed by new insights to be 
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gleaned from the discussions to be found in the original papers. We enjoy the perspective of forty intervening 

years of optimization research. Our intent is to use this hindsight to place direct search methods on arm standing as 

one of many useful classes of techniques available for solving nonlinear optimization problems. Our discussion of 

direct search algorithms is by no means exhaustive, focusing on those developed during the dozen years from 1960 

to 1971. Space also does not permit an exhaustive bibliography. Consequently, we apologize in advance for 

omitting reference to a great deal of interesting work. [1] [10] [11] 

 

Classical direct search methods:  

We organize the popular direct search methods for function-strained minimization into three basic categories. For 

a variety of reasons, we focus on the classical direct search methods, those developed during the period 1960-

1971. The restriction is part practical, part historical.  On the practical side, we will make the distinction 

between pattern search methods, simplex methods (and here we do not mean the simplex method for linear 

programming), and methods with adaptive sets of search directions. The direct search methods that one finds 

described most often in texts can be partitioned relatively neatly into these three categories. Furthermore, the early 

developments in direct search methods more or less set the stage for subsequent algorithmic developments. While 

a wealth of variations on these three basic approaches to designing direct search methods have appeared in 

subsequent years largely in the applications literature these newer methods are modifications of the basic themes 

that had already been established by 1971. Once we understand the motivating principles behind each of the three 

approaches, it is a relatively straightforward matter to devise variations on these three themes. There are also 

historical reasons for restricting our attention to the algorithmic developments in the 1960s. Throughout those 

years, direct search methods enjoyed attention in the numerical optimization community. The algorithms proposed 

were then (and are now) of considerable practical importance. As their discipline matured, however, numerical 

optimizers became less interested in heuristics and more interested in formal theories of convergence. At a joint 

IMA/NPL conference that took place at the National Physics Laboratory in England in January 1971, W. H. 

Swann surveyed the status of direct search methods and concluded with this apologia: Although the methods 

described above have been developed heuristically and no proofs of convergence have been derived for them, in 

practice they have generally proved to be robust and reliable in that only rarely do they fail to locate at least a local 

minimum of a given function, although sometimes the rate of convergence can be very slow.  Swann's remarks 

address an unfortunate perception that would dominate the research community for years to come: that whatever 

successes they enjoy in practice, direct search methods are theoretically suspect. Ironically, in the same year as 

Swann's survey, convergence results for direct search methods began to appear, though they seem not to have been 

widely known, as we discuss shortly. Only recently, in the late 1990s, as computational experience has evolved 

and further analysis has been developed, has this perception changed. [13] [14] 

• Pattern search 
 In his belated preface for ANL 5990, Davidson described one of the most basic of pattern search algorithms, one 

so simple that it goes without attribution: Enrico Fermi and Nicholas Metropolis used one of the first digital 

computers, the Los Alamos Maniac, to determine which values of certain theoretical parameters (phase shifts) best 

t experimental data (scattering cross sections). They varied one theoretical parameter at a time by steps of the same 

magnitude, and when no such increase or decrease in any one parameter further improved the t to the experimental 

data, they halved the step size and repeated the process until the steps were deemed sufficiently small. Their 

simple procedure was slow but sure Pattern search methods are characterized by a series of exploratory moves that 

consider the behavior of the objective function at a pattern of points, all of which lie on a rational lattice. In the 

example described above, the unit coordinate vectors form a basis for the lattice and the current magnitude of the 

steps (it is convenient to refer to this quantity as k ) dictates the resolution of the lattice. The exploratory moves 

consist of a systematic strategy for visiting the points in the lattice in the immediate vicinity of the current iterate. 

It is instructive to note several features of the procedure used by Fermi and Metropolis. First, it does not model the 

underlying objective function. Each time that a parameter was varied, the scientists asked: was there improvement 
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in the t to the experimental data. A simple yes" or no" answer determined which move would be made. Thus, the 

procedure is a direct search. Second, the parameters were varied by steps of predetermined magnitude. When the 

step size was reduced, it was multiplied by one half, thereby ensuring that all iterates remained on a rational lattice. 

This is the key feature that makes the direct search a pattern search. Third, the step size was reduced only when no 

increase or decrease in any one parameter further improved the t, thus ensuring that the step sizes were not 

decreased prematurely. This feature is another part of the formal definition of pattern search in and is crucial to the 

convergence analysis presented therein. [1] 

 

Recent analysis:  
Recently, a general theory for pattern search extended a global convergence analysis of the multidirectional search 

algorithm. Like the simplex algorithms, multidirectional search proceeds by reflecting a simplex (n + 1 points in 

Rn) through the centroid of one of the faces. However, unlike the simplex methods discussed, multidirectional 

search is also a pattern search. In fact, the essential ingredients of the general theory had already been identified by 

First, the pattern of points from which one selects trial points at which to evaluate the objective function must be 

sufficiently rich to ensure at least one direction of descent if xk isn’t a stationary point of f. For Cea and Polak, this 

meant a pattern that included points of the form x0k = xk k ei, i 2 f1; : : : ; ng, where the ei are the unit coordinate 

vectors. For Berman, it meant requiring being the lattice of integral points of Rn, i.e., requiring that the basis for 

the lattice be the identity matrix I 2 Rn n.In these conditions were relaxed to allow any nonsingular matrix B 2 Rn 

n to be the basis for the lattice. In fact, we can allow patterns of the form x0k = xk + k Bγk0, where γk0 is an 

integral vector, so that the direction of the step is determined by forming an integral combination of the columns of 

B. The special cases studied by Cea and Polak are easily recovered by choosing B I and γk0 = ei, i 2 f1; : : : ; ng. 

Second, an essential ingredient of each of the analyses is the requirement that k not be reduced if the objective 

function can be decreased by moving to one of the x0k. Generalizations of this requirement were considered in 

and. This restriction acts to prevent premature convergence to a non stationary point. Finally, we restrict the 

manner by which k is rescaled. The conventional choice, used by both Cea and Polak, is to divide k by two, so that 

k = 0=2k. Somewhat more generally, Berman allowed dividing by any integer > 1, so that (for example) one could 

have k = 0=3k. In fact, even greater generality is possible. For > 1, we allow k+1 = w k, where w is any integer in 

a designated finite set. Then there are three possibilities: 

1. w < 0. This decreases k, which is only permitted under certain conditions (see above). When it is permitted, 

then Lk Lk+1, the relation considered by Berman.  

2. w = 0. This leaves   k unchanged, so that Lk = Lk+1.  

3. w > 0. This increases   k, so that Lk+1 Lk .  

 It turns out that what matters is not the relation of Lk to Lk+1, but the assurance that there exists a single 

lattice Li 2 fL0; L1; : : : ; Lk; Lk+1 g, for which Lj Li for all j = 0; : : : ; k + 1. This implies that fx0; : : : ; xk g Li, 

which in turn plays a crucial role in the convergence analysis.  Exploiting the essential ingredients that we 

have identified, one can derive a general theory of global convergence. The following result says that at least one 

subsequence of iterates converges to a stationary point of the objective function. Theorem 3.2. Assume that L(x0) 

= fx j f (x) f (x0) g is compact and that f is continuously differentiable on a neighborhood of L(x0). Then for the 

sequence of iterates fxk g produced by a generalized pattern search algorithm, lim inf krf (xk) k = 0: k!+1.Under 

only slightly stronger hypotheses, one can show that every limit point of fxk g is a stationary point of f, 

generalizing Polak's convergence result. Details of the analysis can be found in provides an expository discussion 

of the basic argument. [11] [12] [13] 

 

Formulae Used 

 
MRR =1000 × v × f × a [2] 
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Tool life (T).  

Cost per product (Cp).  

Roughness  

Cutting power and force where f is [14][20] 

RESULTS AND DISCUSSION 

For the experiment the Hooks and Jeeves optimization method was used. The Hooks and Jeeves optimization 

method give more accurate results, but they require more time for result. The C program containing this is slow. 

Therefore the MATLAB was chosen for application. [14] [19]  [20] [21]  

Table No. 1 Project Result Analysis Sheet 

Inputs Outputs 

v f A T_Prod Whole tool life Material Removal rate v1 f1 a1 Fc P 

400 0.55 1.6 0.8436 9.402 3.52E+05 400 0.55 1.6 1146 7.5 

358 0.55 1.7 0.8708 6.926 3.35E+05 358 0.55 1.7 1264 7.5 

294 0.55 1.9 0.9238 4.018 3.07E+05 294 0.55 1.9 1512 7.408 

261 0.55 2.1 0.9352 2.84 3.02E+05 261 0.55 2.1 1746 7.5 

250 0.55 2.1 0.9667 2.555 2.89E+05 250 0.55 2.1 1768 7.366 

250 0.53 2.2 0.9595 2.519 2.92E+05 250 0.53 2.2 1799 7.494 

250 0.45 2.5 0.9869 2.471 2.81E+05 250 0.45 2.5 1782 7.424 

250 0.38 2.9 1.003 2.401 2.76E+05 250 0.38 2.9 1796 7.485 

250 0.32 3.3 1.038 2.36 2.64E+05 250 0.32 3.3 1769 7.37 

250 0.29 3.7 1.024 2.286 2.68E+05 250 0.29 3.7 1833 7.5 

250 0.24 4.3 1.057 2.232 2.58E+05 250 0.24 4.3 1818 7.5 

250 0.2 4.9 1.102 2.199 2.45E+05 250 0.2 4.9 1776 7.398 

250 0.18 5.5 1.093 2.133 2.48E+05 250 0.18 5.5 1831 7.5 

250 0.16 6 1.121 2.109 2.40E+05 250 0.16 6 1808 7.5 
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Fig No. 2 Production Rate (T Prod.) vs Whole Tool Life    Fig No.3 Cutting Force (Fc) vs Whole Tool Life 

 

 

CONCLUSION AND SCOPE FOR FUTURE WORK 

This chapter summarizes the conclusions of this study and outlines scope for future work.  

Conclusions: 
Major conclusions for present study are listed as below: 

• Successfully validated optimization results of metal cutting process subjected to optimize for objective 

function. 

• Analytically calculated optimum solution is best matched with current optimization method. This ensures 

optimization of metal cutting process by using proceeding method provides finite solution for finite set of 

data. 

• Successfully used Hooks and Jeeves optimization algorithm in the optimum solution of metal cutting process. 

• Optimum solution obtained by implementing MATLAB program for optimization of metal cutting process is 

best possible optimum solution. 

• Percentage error in analytical and MATLAB results is depend on the number of iteration steps, length of data 

sets, objective function and constrained for optimization. 

Scope for Future Work: 
Although current study presents successful optimization using Hook’s and Jeeves method for metal cutting 

process, there are various algorithms which can be considered as future scope of the work. Some of the important 

scope for future work is as mentioned below: 

• There are several other algorithms (methods) for optimization which can be studied using similar approach. 

• Mathematical analysis of Metal cutting process also can be carried out considering various parameters to 

check validity of process under several conditions. 

• Optimization can be carried out using advanced neural network or genetic algorithm based methods. 
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