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Abstract 
This paper deals with Theoretical and Experimental methods for identification of coulomb ,Viscous and Particle 

damping parameters from the response of Single degree of freedom harmonically forced linear oscillator when 

system damped with more than one type of damping ,which parameter is responsible for the control of resonant 

response of vibrating systems, in experimental method setup have been presented to investigate steady state 

response amplitude xi for  SDOF system for different values of amplitude Yi of the base excitation from this 

relationship of (Xi ,Yi) the values of viscous damping coefficient „c‟ and coulomb friction force F0 ,also 

equivalent viscous damping ratios ,have been calculated from  frequency response analysis for the systems with 

viscous damping ,Viscous and Coulomb friction damping, coulomb friction damping and particle damping by 

using half power band-width method and in theoretical studies expression for steady state amplitude X0 

obtained is used to study the effect of frequency ratio and coulomb friction parameters on phase angle and 

amplitude ratio. 

 
Keywords: Coulomb Friction parameter; Damping ratio; Half power band method; Damping Coefficient; 

Resonant frequency; Excitation frequency; Particle damping; Viscous damping ; Coulomb damping  

 
Relevance 
In many situations, it is important to identify damping information from a vibration system with both Coulomb 

and Viscous sources of damping. Their frequent occurrence in practical engineering has aroused for a long time 

the interest of many researchers in the vibration field. Friction dampers (with viscous damping as the system 

damping) are used in gas turbine engines, high speed turbo pumps, large flexible space structures under carriage 

of railway bogie, vehicle suspension systems etc. These dampers are used to reduce resonant stresses by 

providing sliding contact between points experiencing relative motion due to vibration, thereby dissipating 

resonant vibration energy. 

 

Introduction  

Methods of vibration control 

The problem of reducing the level of vibration in dynamic systems arises mainly due to increase in operating 

speeds of the machines, large dimensions of constructions, stricter standards and norms by the environmental 

pollution boards and technological demands placed on keeping vibrations down to accepted levels. The 

important ways and means of controlling unacceptable vibrations in machines are: 

System Modification: Changing the rigidity (stiffness) and or inertial parameters (mass, inertia) to modify 

natural frequency or frequencies of the dynamic systems. 
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Vibration Isolation: Use of isolation techniques in which either the source of vibration is isolated from the 

system concerned (force transmissibility case) or a device is protected from its point of attachment (motion 

transmissibility case). The isolation systems can be passive, semi-active or active. 

Dynamic Vibration Absorber: A Dynamic Vibration Absorber is simplest device used to reduce the steady 

state vibrations of a system at a certain fixed frequency of excitation. It is a passive control device which is 

attached to a vibrating body subjected to force or motion excitation. 

Method of Damping: Damping used is viscous damping viscoelastic damping, electro-rheological damping, 

magneto-rheological damping, eddy current damping, piezoelectric damping, or Particle damping etc. Passive, 

semi-active and active damping techniques are common methods of attenuating the resonant amplitudes excited 

of a structure/machine. Active damping amplitudes of a structure/machine. Active damping techniques are not 

applicable under all circumstances due to power requirements, cost, environment, etc. Under such 

circumstances, passive techniques are available alternative.  

 

VISCOUS AND COULOMB DAMPING 
Various forms of passive damping exist, including viscous damping, viscoelastic damping, friction damping, 

and impact damping etc. Viscous and viscoelastic damping usually have a relatively strong dependence on 

temperature. Friction dampers, while applicable over wide temperature ranges, may degrade with wear.  

Den Hartog
 
[5]

 
has

 
presented an exact solution for the steady-state vibration of a harmonically excited 

oscillator damped by combined dry and viscous friction. The system, as shown in figure (1.1), consists of a 

forced excited mass with friction forces acting between it and the ground. The several experimental tests to 

verify solutions have been performed to find out the forced response of a single-degree-of-freedom system with 

both viscous and dry friction damping.  

Hundal
 
[6]

 
studied a base-excitation frictional oscillator as shown in figure (1.2), in which close form analytical 

solutions of the equation of motion were obtained. Results have been presented in non dimensional form as 

magnification factors versus frequency ratios as functions of Viscous and Coulomb friction parameters. It has 

been shown that the mass motion may be continuous or one stop during each cycle, depending upon system 

parameters. The response of a single degree of freedom spring-mass system with Viscous and Coulomb friction, 

with harmonic base excitation, has been determined. 

Levitan
 
[7]

 
analyzed the motion of a system with harmonic displacement of the base, as shown in figure (1.3). 

The friction forces in his model act between the base and the mass. An analytical solution for the response of 

the support-excited system has been presented. The solution to the equation of motion has been developed 

through the application of a Fourier series to represent the frictional force opposing the relative motion between 

mass and supporting structure.  

Perls and Sherrard [8]
 
have extended the results of Den Hartog through the ranges applicable to inertial 

instruments as accelerometers and jerk meters. They obtained the curves with analog computers for the 

magnification factor verses frequency ratio of second order systems with combined Coulomb and Viscous 

damping. The figure (1.4) shows a typical vibration instrument with its frame rigidly attached to a sinusoidal 

vibrating structure having a motion cosX t .            
   
 

Ferri and Dowell [9] have investigated the vibration response of both single and multi degree-of-freedom 

systems with combined dry friction and viscous damping. 

Jacobsen and Ayre [10] have developed an approximate scheme for estimating both viscous and dry friction 

quantities from the free-vibration decrements by noting that the viscous friction dominates in the large-

amplitude responses, and that Coulomb friction dominates in the small-amplitude oscillations. As such, they 

exploited the exponential and linear decay of a free vibration Viscous or Coulomb-friction damped system. 

Dimentberg [15] to generate identification equations. A non-linearly damped Single-Degree-Of-Freedom 

(S.D.O.F. for the short) system under broadband random excitation is considered. A procedure for in-service 

identification of the damping characteristic from measured stationary response is described damping 
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mechanisms from measured random vibration data. Extensive results of numerical tests for the procedure have 

been presented.  

Marui and Kato
 
[16] have worked out a brief analytical technique for the behavior of the linear forced 

vibratory system under the influence of a Coulomb friction force, as shown in figure (1.5). The analysis has 

been based on the new simple idea of stopping region. Using this technique, the behavior of the system in the 

low exciting frequency range, where the remarkable influence of friction easily develops, has been examined 

and the results have been compared with the experimental ones.  

Liang and Feeny [19] have proposed a simple identification algorithm for estimating both Viscous and Dry 

friction in harmonically forced single degree of freedom mechanical vibration systems. The method has been 

especially suitable for the identification of systems for which the traditional free-vibration scheme is difficult to 

implement. Numerical simulations have been included to show the effectiveness of the proposed algorithm. A 

numerical perturbation study has been also included for insight on the robustness of the algorithm. 

Liang and Feeny [1] have presented a method for estimating Coulomb and Viscous friction coefficients from 

responses of a harmonically excited dual-damped oscillator with linear stiffness. The identification method has 

been based on existing analytical solutions of non-sticking responses excited near resonance. Schematic 

diagram depicting a SDOF oscillator with viscous, Coulomb friction and base excitation has been shown in 

figure (1.6). 

Cheng and Zu [20]
 
have studied a mass-spring oscillator damped with both Coulomb and Viscous friction and 

subjected to two harmonic excitations with different frequencies. By employing an analytical approach, closed 

form solutions for steady state response have been derived for both non-stop and one-stop motion. From 

numerical simulations, it has been found that near the resonance, the dynamic response due to the two-

frequency excitation demonstrates characteristics significantly different from those due to a single frequency 

excitation. In addition, the one-stop motion has been demonstrated peculiar characteristics, different from those 

in the non-stop motion.  

Theoretical and Experimental Methods for Identification of Coulomb, Viscous and Particle Damping 

Parameters from the Responses of a SDOF Harmonically Forced Linear Oscillator” have been carried out. 

 

 
 

Fig.1.1 Schematic representation of the system,               Fig.1.2 Schematic representation of the system, 

 analyzed by Den Hartog [5]                        analyzed by Levitan [7] 
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Fig.1.3 System with Coulomb friction between mass and ground, with   harmonic excitation of the base 

analyzed by Hundal [6] 

 
 

                                                   
Fig.1.5 Forced vibratory system                               Fig.1.6 Schematic diagram depicting a SDOF oscillator 

         with Coulomb friction [16]            with viscous, Coulomb  friction and base excitation [1] 

 

STEADY STATE RESPONSE ANALYSIS 
Figure (2.1) shows a mass-spring-damper system, (SDOF) where a mass m is suspended from a spring with 

stiffness k and a viscous fluid damper with damping coefficient c and Coulomb friction force F. The mass is 

subjected to two harmonic excitations P1 cos (1t+¢1) and P2 cos (2t+¢2) with different frequencies. 

21 
N

M
      (2.1) 

where M and N are integers and they have no common factors. Thus, the two external harmonic excitations can 

be regarded as a single nonharmonic, but periodic excitation whose frequency   is calculated as the greater 

common divisor of the two original harmonic frequencies
 
[20]

 

N

2       (2.2) 

                   
Fig. 2.1 A mass spring damper system subjected to excitation P (t)    Fig. 2.2 Free Body Diagram 

Where P (t) =    1 1 1 2 2 2cos cosP t P t           
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Referring the free body diagram of figure 2.2, the equation of motion of mass m is given as, 

   1 1 1 2 2 1cos cos ( )mx P t P t cx kx N                  (2.3) 

After writing F N  and rearranging, the equation 2.3 becomes, 

     122111 coscos tPtPFkxxcxm                      (2.4) 

Where, x is the displacement, and   is the phase difference between two harmonic excitations, i.e., 

12   . Assuming that the response always starts (t=0) at maximum value, the phase difference between the 

first harmonic excitation and the motion is uniquely determined by the unknown phase angle 1 .  

Correspondingly, the time boundary conditions of equation (2.4) take on the following simple form: 

  ;0t   ,0xx           0x  

                                              
;

t         ,0xx          0x               ( 2.5) 

Where  x0 is the amplitude of the vibration. Introducing the following parameters 

,

2
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c mc 2 and                 (2.6) 

Dividing both sides by m of Eq. (2.4) one obtains, 

     12
2

11
1 coscos t
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t

m

P
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F
x

m

k
x

m

c
x                                   (2.7) 

Divide and multiply by k on right side of Eq. (2.7) one get, 

     12
2

11
12

coscos t
m

k

k

P
t

m

k

k

P

m

k

k

F
xx

m

c
x n

                     (2.8) 

Upon substituting parameters from Eq. (2.6) one can write, 

     12

2

211

2

1

22
coscos tataxxx

m

c
x nnfnn

                   (2.9) 

The equation of motion, Eq. (2.9), then can be rewritten as, 

        122111

22
coscos tataxxx

m

c
x nfn

            2.10   

     
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1111121
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

tsa

tsaptCptCexx m
ct

f              (2.11)  

Where, 
,2

2
2

4 




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

m

c
p n     

2

1

1

2
tan

i

i
i

s

s


  

  ( 2,1i )  

and C1 and C2 are two integration constants.     (2.12) 

The two constants C1 and C2, the unknown amplitude x0 and the phase angle 1  will be determined by using the 

four conditions in Eq. 2.5, as described in the procedure outlined in Appendix I from Eq. I-16 onwards.  

   The final expressions for the amplitude x0 and phase angle 1 of the steady-state vibration for nonstop motion 

are obtained as,       

* *2 * *

0 *

4

2

b b a c
x

a

  
                                              (2.13) 
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Where,














.)()()(

),)((2))((2

)()(

222*

*

,
22*

BPAQbQeBeAbPc

bQeBaQdBeAbPdAaPb

aQdBdAaPa

                                (2.14) 

The phase angle 1  is determined as,             
BPAQ

CQBR




1cos                                 (2.15) 

Experimental Analysis 

i) An experimental set up has been designed and developed to obtain input output amplitude relationship 

for SDOF Harmonically excited system with Viscous, Viscous and Coulomb friction, and Viscous, 

Coulomb friction and Particle damping.  

ii) For this purpose, design and development of viscous fluid damper, dry friction damper and particle 

damping system has been carried out. 

 

Fig 3.1 Experimental test set-up 

A schematic of the experimental test set-up is shown in the fig. (4.1) of the “C‟ frame. The frequency response 

curve of the system is obtained using the accelerometer pick up with its necessary attendant equipment and a 

FFT analyzer, over a small range of excitation frequency .The SDOF system taken for analysis has following 

parameters. mass m =1.0 kg, spring stiffness k = 3022.0 N/m, coefficient of viscous damping c = ?, Coulomb 

friction force F0 = ? Using this experimental set-up, steady state response amplitudes xi of the SDOF 

harmonically base excited system have been determined by exciting the system near resonance with excitation 

frequency near about 8. 75 Hz. These values are given in Table 4.2. 

Yi xi  Yi xi 

Y1=0.701 x1 = 4.05  Y1=0.81 x1 = 3.15 

Y2=0.7242 x2 = 4.34  Y2=0.986 x2 = 5.34 

Y3=0.7514 x3 = 4.68  Y3=1.021 x3 = 5.73 

Y4=0.7626 x4 = 4.82  Y4=1.114 x4 =64.84 

Y5=0.788 X5 = 5.04  Y5=5.04 X5 = 8.31 

   Table 4.2 the input/output amplitudes of experimental set-up 

From this (Yi, xi) relationships, the values of viscous damping coefficient c and Coulomb friction force F0 are 

determined as follows: 

i) A straight line relationship between Y0 and x0 has been obtained using regression analysis with points (Yi, xi) 

taken from Table 4.2. 

ii) The slope m and intercept z on the ordinate axis have been obtained as,  

 m = 0.08585 and 0.083361,   z = 0.3517 and 0.544535 mm 

iii) Using the identification scheme presented in section 3.3of chapter 3, the values of viscous damping 

coefficient c and Coulomb friction force F0 are determined as follows: 

Parameters 
Spring stiffness 

k1/2=1511 N/m 

Number of turns (N) 14 

Wire diameter (d) 4mm 

Mean diameter (D) 38 mm 

Outer diameter (D0) 42 mm 

Inner diameter (Di) 34 mm 

Spring index (C) 10 
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a) Determination of viscous damping coefficient c:  

 The viscous damping ratio ζ is given as  

2 1

2 12( )

Y Y

x x



 


=

1

2
 slope of line = 

1

2
m         (refer Eq. 3.13) 

From the slope m = 0.08585 and 0.083361 we get,  

   =
1 0.08585 0.083361

2 2

 
  
 

 

  = 0.04230275  But, / cc c     / 2c mk    
 

0.04230275
2 1.0 3022

c
 


 

  viscous coefficient c = 4.65 N-sec/m 

b) Determination of Coulomb friction force F0:  

From the intercept,   z = 0.3517 and 0.544535 mm we get, 

fGx z  = 
0.3517 0.544535

2

 
 
 

    (refer Eq. 3.8) 

0.4481175fGx  But, 
sinh( )

cosh( ) 1
G







     (refer Eq. 3.14) 

By putting the value of  = 0.04230275 determined just above one can get, 

sinh(0.04230275 )

cosh(0.04230275 ) 1
G








                               

15.07127759G   

By substituting the value of G one can determine the value of fx as, 

fx = 0.029733212  But, 0
f

F
x

k
       (refer Eq. 3.3) 

0 3022 0.029733212fF k x      

Coulomb friction force F0 = 89.85376666 N 

Thus the unknown values of viscous damping coefficient c and Coulomb friction force F0 have been identified. 

Using the experimental set-up, the frequency response analysis has been carried out for a harmonically base 

excited SDOF system with 

Type of damping fr(Hz) Xr (microns) f1 f2 

S 8.75 4647.5 8.314 9.243 0.053 

S+C 8.75 4437.5 8.178 9.561 0.076 

S+P(T:-No balls) 7.5 6815 7.289 7.9 0.04 

S+P(T:-200 balls) 7.5 6325 7.308 8.2 0.059 

S+P(T:-300 balls) 7.5 6095 7.102 8.037 0.0623 

S+P(T:-fully filled withballs) 7.5 4395 6.92 8.08 0.0778 

S+V 9 194.5 8.508 10.687 0.121 

S+V+C 9 113.83 7.93 10.506 0.1431 

S+V+C+P (25%full balls) 9 143.5 7.138 11.04 0.2167 

S+V+C+P (50%full balls) 9 121 7.63 11.95 0.2333 

S+V+C+P (full balls) 9 117 7.82 12.08 0.2366 

 Table 4.4 Damping ratio  of various damping combination 

 



NOVATEUR PUBLICATIONS  

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] 

ISSN: 2394-3696 
VOLUME 1, ISSUE 2 DEC-2014 

 

8 | P a g e  
 

  

              fn=8.75 Hz ; f1= 8.314 Hz ;f2= 9.243Hz                       fn=8.75 Hz ; f1= 8.178 Hz ;f2= 9.561 Hz 

                        ξ=0.053 ; Xr=4647.5 µm                   ξ=0.076 ; Xr=4437.5 µm 

                 Fig. 1 Frequency response curve for ξs                   Fig.2  Frequency response curve for ξs+c 

 

 
fn=9.0 Hz ; f1= 8.508 Hz ;f2= 10.68 Hz                        fn=9.0Hz ; f1= 7.93 Hz ;f2= 10.5 Hz 

ξ=0.121 ; Xr=194.5 µm                        ξ=0.143 ; Xr=113.83 µm  

Fig. 3. Frequency response curve for ξs +v         Fig.4.  Frequency response curve for ξs+v+c 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

fn=7.5 Hz ; f1= 7.28 Hz ;f2= 7.9 Hz                        fn=7.5 Hz ; f1= 7.308 Hz ;f2= 8.2 Hz 

ξ=0.04 ; Xr=6815 µm       ξ=0.059 ; Xr=6325 µm  
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Fig.5.  Frequency response curve for ξs +p  Fig.6.  Frequency response curve for ξs+p 

 

 

 

RESULT AND DISCUSSION  

 

 

 

 

 

 

 

          fn=7.5 Hz ; f1= 7.102Hz ;f2= 8.63 Hz                  fn=7.5 Hz ; f1= 6.92 Hz ;f2= 8.08 Hz 

                ξ=0.0623 ; Xr=6095 µm           ξ=0.0778; Xr=4395 µm  

        Fig.7. Frequency response curve for ξs +p Fig.8.  Frequency response curve for ξs+p 

RESULT AND DISCUSSION 

 

1. Coulomb friction parameter F/P1has pronounced effect on resonant amplitude F/P1increases  steady state 

amplitude x0 decreases at a faster rate. 

2. However, it was not cleared how much contribution of viscous friction in system & in many situations it is 

required to know content of viscous & Coulomb friction in the system. 

3 .So procedures is presented for identification of Coulomb & Viscous friction damping in a harmonically base 

excited SDOF vibrating system 

4. Using experimental set up, steady state response amplitudes Xi of SDOF system have been determined by 

exciting system near resonance about 8.75 Hz. From these (Yi, Xi) relationships, values of Viscous damping 

coefficient c=4.65 N-sec/m & Coulomb friction force F0 =1.062 N were determined. 

5. Frequency response analysis has been carried out for various types of damping combination. The amount of 

content of damping coefficient has been determined by using Half Power Band Width method. 

  a) s+v increases over s is of the order 1.28 times  

  b) s+C increases over s is of the order 0.433 times  

  c) s+v+C increases over s is of the order 1.7 times 

  d) s+v+C+P increases over s is of the order 3.46 times 

 

CONCLUSIONS  
 

1. From the steady state response analysis carried out for a SDOF with Coulomb and viscous damping and 

subjected to harmonic excitations (two frequency and single frequency excitation), it is seen that the Coulomb 

friction parameter F/P1 has pronounced effect on the resonant amplitude and as the value of Coulomb friction 

parameter increases, the steady state amplitude x0 decreases at a faster rate.  

 2. Since the vibrating system has both viscous and Coulomb friction damping, Coulomb friction has 

pronounced effect on the resonant amplitude. It is not clear from the analysis how much is the contribution of 

the viscous friction in the system towards the reduction of resonant amplitude. In many situations, such as 

control system, it is necessary to know the content of the viscous and Coulomb friction damping in a given 

vibrating system. For that purpose, the identification of these two types of friction in a vibrating system will 

play a significant role when the control of vibration is carried out using the method of damping. 
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