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Abstract:   

This article discusses the interaction of harmonic waves with a rigid inclusion in a 

viscoelastic medium. The effect of viscosity parameters on the stress-strain state of a 

cylindrical body is shown.  
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INTRODUCTION 

In the last decade, the volume of construction of underground structures, in particular of a 

cylindrical type, in seismically active regions has been continuously increasing, therefore, 

the issues of ensuring the strength and reliability of underground structures under seismic 

influences remain relevant. Underground structures (tunnels, culverts, tanks, bunkers, 

cylindrical missile silos and 

Belong to very important objects, and their specific volume is especially large in seismic 

regions. The complex of problems of ensuring the seismic resistance of structures can be, as 

is known, conditionally divided into three main groups: 1) determination of seismic loads, 2) 

determination of an earthquake-resistant state, and 3) taking into account the seismic-stressed 

state in the calculations and during the practical implementation of antiseismic measures. 

Methods for accounting for seismic loads in the design of underground structures [1-4] 

revealed the need for more careful consideration of the seismic factor in the design. 
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Pastonization of the Problem and Methods of Solution Consider the steady-state oscillations 

of a rigid inclusion. The equations of motion for the environment and the cylindrical body 

are 

𝜌𝑗
𝜕2𝑈𝑗

𝜕𝑡2
= 𝜇𝑗∇𝑢𝑗 + (𝜆𝑗 + 𝜇𝑗) 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑈𝑗 ,     𝑗 = 1,2, … , 𝑛 + 1.   (1) 

 

Where 𝜆𝑗 , 𝜇𝑗-are the operators of the Lamé coefficients, which have the form 

                            𝜆𝑗𝜑(𝑡) = 𝜆𝑗 [𝜑(𝑡) − ∫ 𝑅𝜆𝑗(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏
𝑡

𝑎
],         (2) 

𝜇𝑗𝜑(𝑡) = 𝜇𝑗 [𝜑(𝑡) − ∫ 𝑅𝜇𝑗(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏

𝑡

−∞

], 

𝜆𝑗 , 𝜇𝑗- instantaneous Lamé coefficients; 𝑅𝜆𝑗 , 𝑅𝜇𝑗 - relaxation nuclei; φ (t) - an arbitrary 

function of time; - material density; 𝑈𝑗{𝑈𝑟𝑗 , 𝑈𝜃𝑗 , 𝑈𝑧𝑗}- vector of displacements of the 

environment. 

We represent the displacement Uj in the form 

𝑈𝑗 = 𝑔𝑟𝑎𝑑𝜑𝑗 + 𝑟𝑜𝑡𝜑𝑗 , 𝜑𝑗(𝑂, 𝜓1𝑗 , 𝜓2𝑗)  (3) 

Substituting (3) into (1), for 𝜑𝑗  and 𝜑𝑗we obtain integro-differential equations in the form 

∇𝜑𝑗 − ∫ [𝑅𝜆𝑗(𝑡 − 𝜏) + 2𝑅𝜇𝑗(𝑡 − 𝜏)]
𝑡

𝑎
∇𝜑𝑗𝑑𝜏 =

1

𝐶𝑝𝑗
2

𝜕2𝜑𝑗

𝜕𝑡2
,   (4) 

∇𝜑𝑗 − ∫ [𝑅𝜇𝑗(𝑡 − 𝜏)]
𝑡

𝑎
∇𝜑𝑗𝑑𝜏 =

1

𝐶𝑠𝑗
2

𝜕2𝜑𝑗

𝜕𝑡2
,     

Where С𝑝𝑗
2 =

𝜆𝑗+2𝜇𝑗

𝑝𝑗
 ;       С𝑠𝑗

2 =
𝜇𝑗

𝑝𝑗
;  ∇- the Laplace operator in coordinates r, θ, z. For an 

elastic medium 𝑅𝜆𝑗 = 𝑅𝜇𝑗 = 0. 

 

The cylindrical body 0 can be absolutely rigid, then we obtain the linear inclusion equations 

from Newton's law, which has the following form: 

𝑚
𝜕2𝑈(𝑡)

𝜕𝑡2
= 𝐹(𝑡), 𝐼

𝜕2𝜃(𝑡)

𝜕𝑡2
= 𝑀(𝑡),       (5) 

Where 𝐹(𝑡) = ∮ [𝜎(1) + 𝜎(𝑆)]
𝑆

𝑛𝜕𝑆;
𝐶

       (6) 

𝑀(𝑡) = ∮ 𝑟[𝜎(1) + 𝜎(𝑆)]
𝑆

𝑛𝜕𝑆;
𝐶

       (7) 

 

n-unit normal vector to С; r - radius vector from the center of mass to the surface C of the 

rigid inclusion; U and Ω - translational and rotational motion of a rigid inclusion, 

respectively; m is the mass of the inclusion; I is the moment of integration with respect to the 

main axes passing through the center of mass. The boundary conditions in C will be: 

[𝑈(𝑝) + 𝑈(𝑆)]
𝑐

= 𝑈(𝑡) + 𝜃(𝑡) ∗ 𝑟,         (8) 
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Where  𝑈(𝑝) и 𝑈(𝑆)- the vector of displacements of the incident and reflected waves, U and θ 

depend on the incident and reflected fields. If the inclusion is motionless, 

то  𝑈(𝑡) = 𝜃(𝑡) = 0,        [𝑈(𝑝) + 𝑈(𝑆)]
𝐶

= 0      . 

c𝛷(𝑝)
= 𝐴𝑒𝑖(𝑎𝑥−ω𝑡) = ∑ 𝐸𝑛𝑖2𝐽𝑛(𝑎𝑟) cos(𝑛𝜃)ⅇ−ⅈω𝑡∞  , (9) 

где E0 = 1; En= 2; n ≥ 1;A = const; Jn – Bessel function. 

The general solution of wave equations (4) representing reflected waves (their potentials 

satisfying the conditions for studying Sommerfeld as n → ∞) has the form 

                    (
𝜙(𝑞)

𝜙(𝑞)) = ∑ (
𝐴𝑛𝐻𝑛

(1)
(𝛼𝑟) cos(𝑛𝜃)

𝐵𝑛𝐻𝑛
(1)

(𝛽𝑟) sⅈn(𝑛𝜃)
)

∞

𝑛=0

 e-iωt   .   (10) 

Here An and Bn are undefined coefficients; 𝐻𝑛
(1)

 is the Hankel function of the first kind. 

Consider the following tasks. 

Let the inclusion move translationally together with the environment, then the boundary 

condition (8) has the form Ur = Ucos(θ),  Uθ = Usin(θ),  for  α = r.. If M is the inclusion 

mass, then U is determined from Newton's equation of motion. 

M U = ∫ [𝔖𝑟𝑟 cos(𝜃) − 𝔖𝑟𝜃 sin(𝜃)] 𝛼𝜕𝜃,   
2𝜋

0
       

Where  М = πρBα2 ;     ρB- inclusion density. 

Ambient stresses at r = α; looks like: 

𝔖𝑟𝑟 = 
2𝜇

𝑎2 ∑ (𝐸𝑛i𝑛𝜑0𝜀11
(1)

+ 𝐴𝑛𝜀41
(3)

+ 𝐵𝑛𝜀43
(3)

)
∞

𝑛=0
 cos(θ) e-iωt  , 

𝔖𝑟𝜃 = 
2𝜇

𝑎2 ∑ (𝐸𝑛i𝑛𝜑0𝜀11
(1)

+ 𝐴𝑛𝜀41
(3)

+  𝐵𝑛𝜀43
(3)

)
∞

𝑛=0
 sin(θ) e-iωt  ,  (11) 

𝔖𝜃𝜃 = 
2𝜇

𝑎2 ∑ (𝐸𝑛i𝑛𝜑0𝜀21
(1)

+ 𝐴𝑛𝜀21
(3)

+ 𝐵𝑛𝜀22
(3)

)
∞

𝑛=0
 cos(θ) e-iωt  , 

где𝜀11
(1)

 = (𝑛2 + 𝑛 −
𝑎2𝑎2

2
)  Jn (αα) – αα Jn-1 (αα); 

𝜀11
(3)

 = (𝑛2 + 𝑛 −
𝑎2𝑎2

2
)  Hn(1) (αα) – αα Hn-1(1) (αα); 

𝜀11
(3)

 = n(n+1) Hn(1) (βα) – βα Hn-1(1) (βα);       

𝜀42
(1)

 = -n[(𝑛 +)Jn(αα) − αα Jn−1
(αα)]; 

𝜀41
(3)

 = -n[(n+)  Hn(1) (αα) - αα Hn-1(1) (αα)]; 

𝜀42
(1)

 = (𝑛2 + 𝑛 −
𝛽2𝑎2

2
− )  Hn(1) (βα) – βα Hn-1(1) (βα); 

𝜀21
(1)

 = − (𝑛2 + 𝑛 −
𝑎2𝑎2

2
− 𝑎2𝑎2) Jn(αα) − αα Jn−1

(αα) ;  

𝜀21
(1)

 = − (𝑛2 + 𝑛 −
𝑎2𝑎2

2
− 𝑎2𝑎2) Hn(1) (αα) – αα Hn-1(1) (αα); 

𝐽22
(3)

 = −𝑛[(n-1)Hn(1) (βα) – βα Hn-1(1) (βα)]. 
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Substituting (10) into (9) and integrating and from the resulting differential equation, we find 

the displacement of the rigid inclusion 

U = 𝜁
1

𝑎
 [2iA1J1(αα) + A1H1(αα) + B1H1(αα)] . 

where 

𝜁 = ρс / ρB;   ρс  ,  ρB    - density of the environment and inclusion. 

Taking into account the boundary conditions (2.1.8), A1 and B1 can be determined in the 

form: 

A1 = 
2ⅈ𝐴

𝛥1
 [-4𝜁 J1(αα) H1(1)(βα) + (1+𝜁) J1(βα)βα H0(βα) + (1+𝜁) αα 

J0(αα)H1(1)(βα) −  αβ2α2 J0 (αα) H0(βα)] . 

B1 = 
2𝐴1

𝛿1𝜋
 2(1−𝜁) , 

𝛥1 = 4𝜁 H1(1)(αα) H1(1)(βα) - (1−𝜁) J1(βα)βα H0(1)(βα) H1(1)(αα)- 

-(1−𝜁) 𝛼𝛼 H0(1)(αα) H1(1)(βα) + αβα2 H0(1)(αα) H0(1)(βα) .  

For ζ = 0, we obtain a solution for a fixed inclusion. Then the expressions for displacement 

and stress on the surface of a rigid inclusion have the form: 

Ur = 
4𝐴

𝑎𝜋𝛥1
𝜁 [2H1(1)(βα) – βα H0(1)(βα) cos(θ) ,  

Uθ = 
4𝐴

𝑎𝜋𝛥1
𝜁[2H1(1)(βα) – βα H0(1)(βα) sin(θ) , 

𝜎𝑟𝑟 = 
2

𝜋
𝜇Aβ2 { i [ 𝛼𝛼 H1(1)(αα)]-1 -2[(1+𝜁) H1(1)(βα) - βα H0(1)(βα)] +  

+ 
cos(θ)

𝛥1
 + 2∑

𝛽𝛼 H1
(1)

(βα)

𝛥1

∞

𝑛=0

 cos(θ)} ,    (2.1.13) 

𝔖𝑟𝑟 = 
2

𝜋
𝜇Aβ2{2 (1−ζ) H1(1)(βα)

csⅈn(θ)

𝛥1
 + 2∑ i𝑛−1

𝑛Hn
(1)

(βα)

𝛥1

∞

𝑛=0

 sin(nθ)} ,  𝔖𝜃𝜃 = ( 1 −

2
𝑎2

𝛽2
 ) 𝜎𝑟𝑟 .  

Consider some limiting cases when the wave number /αα/ → 0 and /αα/ >> 1. We use the 

asymptotic expression for the Hankel function of small and large arguments when /αα/<<1 - 

 

U* (αα) → 
𝑎2𝑎2

4𝜁
 [ ᴂ2 (ζ − 1) ln (ᴂ𝛼) + ln(αα) ] + iπ

𝑎2𝑎2

4𝜁
 [(1 −  ζ)ᴂ2  + (1 −  ζ) ], where  

ᴂ = ε (1-υ) / (1-2υ); U* = U/ iϕ0α.  for /αα/ → 0, то U* (αα) → 1. The  (αα) >> 1   U* (αα) 

≈ 2√
2

𝜋
 ζ√

1

(𝑎𝑎)2
Exp(-iαα+ωt-3/4π). At (αα) → ∞, we have U * → 0. The calculation results 

are shown in Figures 1. It can be seen that with an increase in the density of a rigid inclusion, 

the real and imaginary parts of the natural frequencies smoothly increase. When ζ = 1, i.e. ρC 

= ρB, there is only one natural frequency. As can be seen in Figures 1 and 2, when the 

frequency of forced disturbances coincides with the intrinsic one ΩR = ωa / Cp, a resonance 
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occurs, but the resonance has a finite peak. The second natural frequency has almost no 

effect on the amplitude value, i.e. the second natural frequency accompanies a large energy 

damping. Similar results were obtained for viscoelastic problems, when a = 0.048 of low 

viscosity was compared with elastic cases. Resonance peaks in the viscoelastic problem 

decrease by 15-20% and shift to the left. Indeed radial and tangential stresses on the rigid 

body of the field | aa | -> 0 (ζ ≠ 0): 

𝔖𝑟𝑟
∗ = 1 +

2

ᴂ2+1
cos(20) , 𝔖𝑟𝜃

∗ = 1 +
2

ᴂ2+1
cos(20) , 

𝔖𝜃𝜃
∗ = 1 − 

2

ᴂ2
 𝜎𝑟𝑟

∗ , 

For  𝜁=0, n=1 , 𝔖𝑟𝑟
∗ → −

1

(1−ᴂ2)𝑎𝑎
 ,                   𝔖𝑟𝜃

∗ → −
1

(1−ᴂ2)𝑎𝑎
 . 

These results are the same as static results. 

fig. 1. 

 
fig. 1. Frequency dependences of mixing. 

 
 

fig. 2. Frequency dependences of voltages 

The distribution of radial normal pressure on a rigid circular cylinder is shown in Fig. 2. at υ 

= 0.2; αα = 0.1. Similar results were obtained for the case when the environment is 
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viscoelastic, at low and high viscosities. With an increase in viscosity, the resonant type fits 

15-20%. 
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