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ABSTRACT 

The modern theory of sets has been originated by the German Mathematician George Cantor. He published 

so many papers showing various properties of abstract sets. George Cantor’s work was well received by a 

famous Mathematician Richard Dedekind and another German Mathematician Gottlob Frege presented the 

set theory as principles of logic. It was the famous English philosopher Bertrand Russel showed in with the 

intention of the continuation of a set of all sets lead to a inconsistency and is known as Russell’s paradox. 

Later on many paradoxes were introduced by several mathematicians as well as logicians. several existence 

and non-existence results on abelian difference sets were, found in research papers of Arasu, Pott , 

Jungnicked and Schuildt, and Davis and Jedwab. Difference sets play a extremely significant function in 

combinational design theory and in communicational engineering. Hall Introduction of the useful concept of 

multipliers  and can be used to investigate the existence question. Also difference sets in subjective cluster 

were formally introduced by Bruck and a new types of sets were  developed known as cyclotomic difference 

sets, twin prime power difference sets and also spence difference sets. 

  

1.  INTRODUCTION 

A  (v, k, A)-difference   set  D  = {d1  , •••,   dk}    is  a  compilation    of  k  residues modulo   v, such  that  

for  any residue  y  =I=-    0 (mod  v) the  congruence   (mod  v) has accurately a solution   pairs  (d, , dj)    

with  d, and  d, in D. 

Difference sets have been studied by numerous authors. I will just provide the following ample reference 

[1].  

Iwill be mostly alarmed with a generalization of the difference   sets. A (v,k,A, g)-addition set A  = {a1 ,... , 

ak}  or simply   an   addition   set is a  group of k distinct residues modulo v,such that for any residue y  =I=-    

0 (mod  v) the  congruenc  (mod  v) has  exactly  A solution   pairs  (ai'  aj) with  a, and  aj in A. It is  clear   

that   when  g  = v -    1, the  (v, k, A, V  -      I)-addition     sets  are difference   sets. We sometimes  mark  g  

=  -1 instead   of g  = v  -    1. It is also  clear  that  we can  restrict  g to  the  range O<;g<;v-l.                    

(1.3) 

Given  any  positive  integer  v and  g  satisfying  (1.3) there  are  certain obvious addition  sets: 

(i)   the null set A  =  0; 

(ii)    A  =  {i},  where (g + 1) i  = 0 (mod v); 

(iii)   A  = {a, 1,   , v -    I}; 

(iv)   A  =  {I, 2,    , v -   I}, where g  =  0;  and 

(v)   A = {a, 1,   , i-I,    i + 1,... , v -   I},   where   (g, v) =  I    and 

(g  + 1) i = 0 (mod v). 

 

These addition  sets are said to be trivial.  A nontrivial  addition  set will satisfy l<k<v-l.                                   

A  simple  nontrivial  example  is  the  set  {1,4} which  is  a  (5,2,  1,2)- addition  set as well as a (5,2,  1, 

3)-addition  set. Other  examples will be given in Section 3. 

It should be mentioned  that  the author  has proved in [5] that  there is no nontrivial  addition  set with g =  

1. 

 

2. ELEMENTARY RESULTS 

In this section ,I will set up a little basic outcome about addition sets. First of all, I will define a parameter  d  

by letting d + A be the number of ways that  can be represented  as (a, + gaj)  modulo  v with a,  and aj in the  

addition  set A.  The parameters  v, k, A,  and  d of an  addition  set satisfy some simple relations. 
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THEOREM     2.1.    The parameters    of  a nontrivial   addition  set  satisfy 

 (i)    k2   =  d +dA  

(ii)    d + A  ~    k, 

(iii)   0  < A  < k,  and 

(iv)   -k     < d  < k.      

 

Proof:-      Relation  (i) is  established  by  counting.  There  is  a  total   of k2    pairs  of  the  form  (ai,  aj).  

Thus  (i) follows  from  the  definitions  of addition  sets and the parameter  d. Relation  (ii)  is established  

by counting  the  number  of solution  pairs (ai,  a;) in the congruence(mod v). 

By counting   the  number   of solution   pairs  (ai,  aj) in  the  congruence  a, +  ga, = y (mod  v),where  y  = 

E  (mod  v), we  obtain ° ~,\ ~ k.  Together   with  relation   (ii),  we have k   ~  d ~  k.                                            

In order   to  prove   (iii)  and  (iv) we  have  to  show  that   equality   does  not hold  in  (2.1)  and  (2.2).If d 

= k,  then  from  (ii) we  have  ,d =  k.  Substituting   the values  into (i) we have k2   =  =k  + kv.   (2.3) 

Equation     (2.3)   implies    that    k  = 0or   k  =  v -   1,  contradicting   the assumption    that  the  addition    

set is nontrivial. If d = k, then  from   (ii) we have  ,\ = 0. Substituting    the  values  into  (i) we have  k2  =  -

k.     ( 2.4) Equation    (2.4) implies  that  k  =  0or1, again  contradicting    the assumption that   the  addition    

set  is nontrivial.    Hence   we  have  established    (iv). If  k =  0,  then   (i)  implies   that  k2   =  d, which  

is impossible   because   of  (iv). If d =  k, then  (i) implies  thatd =  k(k  -   v).    ( 2.5) Since  k -   v =0,  we  

have   ki = d,    which   is  again   impossible.  

Hence   the theorem is proved. Instead   of  the  addition    set   itself,  it  is  often   convenient    to  deal  

with  a polynomial    derived   from  it. A Hall-polynomial    of a set A  of residues   modulo   v is the  

polynomial .In  terms   of  polynomials,    the  addition    set  property    gives  the  following result. 

 

THEOREM2.2.    A set  A of k distinct   residues  modulo  v is a (v, k, A, g)- addition  set  if and  only  if its 

Hall-polynomial    satisfies 

8(x) 8(xU)      ==   d -+ .\(1 -+ x -+  ...  + xv-!)         (mod  XV    -       1).      With  the  above  observation,    

we can  prove  the  following   result. 

THEOREM2.3.    If g.c.d.   (g,  v) =  w =F    1 and  d  =F   0,  then  the  addition set is trivial. 

 

Proof      Let  8(x)  be  the  Hall-polynomial      of  the  addition    set.  Then   it satisfies   Eq.  (2.7).  Since  

w  ] v, Eq.  (2.7)  implies 

8(x) 8(xu)  = d -+ A(1 + x -+  ...  -+ xV-I)        (mod  XW    -       1). 

 

If gw  is any  primitive   with root  of unity,  then  this  congruence   gives  

 wig,    gwu   = 1   (2.8)  

Since  we have  assumed   that   d =1=    0, it follows  from   that  k divides  d as  integers.   Because   of  

inequality    (iv)  of Theorem   2.1,  the  last  statement implies  that  the  addition   set is trivial.  

COROLLARY2.4.  Let  A be a nontrivial  addition  set  with  v even.  Then  d is a square. 

Proof      Theorem   2.2 implies  that  the  Hall-polynomial     for  A satisfies  8(x) 8(xU)   = d + .\(1 + x -+  

...  + XV-I)        (mod  x" -   1).    (2.9) Substituting    x  =  -1 into  the  above  congruence,   we have 8(-1)   

8«-1)g)  =  d.                                   (2.10) 

As A is nontrivial,   Theorem   2.3 implies  that  g.c.d.  (g, v) =  1. In particular, g is odd.    Hence  (2.10)  

implies  that  d is a square. Given   a   set   A  =  {al , ... , ak} mod  v,  then   for   any   integer    s  the   set  

{al  + Sl , ... , ak + s} = A  + s taken  modulo   v is a shift  of A by s. It should be  noted   that   a  shift   of  

an  addition    set  need   not   be  an  addition    set. However   given  an addition   set A  = {al , ... , ak} and  

any integer  t, relatively prime   to  v, the  set {tal, ..., tak} = tA taken   modulo   v is also  an  addition set 

with  the  same  parameters.    If t is relatively   prime  to  v and  if tA is some shift A + s of the original 

addition  set A, then t is called a multiplier  of A. If t =t=   1 (mod v) then  t is a nontrivial  multiplier.  If tA 

==  A when taken modulo v, then t is a multiplier fixing  the addition set A. Some well-known multiplier  

theorems  for  difference sets can be generalized to the case of addition  sets. A proof  of one will be given in 
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[6]. The question  as to whether  every difference set must have a nontrivial multiplier is still open. For 

addition  sets, there is a partial answer. 

 

THEOREM  2.5.    Let A be a nontrivial  (v, k, A, g)-addition  set with d =1=   O. Given any integer h prime  

to v, A  is also a (v, k, A, h)-addition  set if and only if gh is a multiplier fixing  A. 

Proof     Let  us  first  assume  that  A  is both  a  (v, k, A, g)-addition   set and  a (v, k, A, h)-addition  set. 

By Theorem  2.2, it follows that  the  Hall- polynomial  for A  satisfies 

    O(x) O(xg) = d + A(1  + x + ...+ XV-I)       (mod XV -   1),   (2.11) 

O(x) O(Xh) ==  d + A(1 + x + ... + XV-I)        (mod XV -   1).   (2.12)   

Substituting  Xh for x in (2.12), we have 

 O(Xh) O(xgh) ==  d + A(1 + Xh + ... + X(v-I)h)       (mod xvh -   1).   (2.13) Observe that XV -   1 divides 

xvh -   1. Furthermore,  since h is prime to v, we have 

1 + Xh + ...+ X(v-I)h _   1 + x + .., + xv-I     (mod XV - 1). Hence (2.14) implies 

O(Xh) O(xgh) = d + A(1 + x + ...+ XV-I)        (mod XV -   1).           (2.15) 

By multiplying O(x) to both sides of (2.15), we obtain 

O(x) O(Xh) O(xgh) ==  O(x)[d + A(I  + x + ...+ XV-I)]      (mod XV -   I). (2.16) 

Now we use (2.13) and obtain 

O(xgh)[d  + A(1  + x + ...+ XV-I)] = O(x)[d + A(1 + x + ...+ XV-I)] (mod XV -  1).   (2.17) 

Next we expand both sides of (2.17) and cancel. Observe that 

O(XYh)(l  + x + ...+ XV-I) = k(I  + x + ...+ XV-I)   (mod XV -  1) 

A  similar  congruence    is true  for  8(x).  Together   with  the  assumption    that d  =1=    0, we have (mod  

XV  -     1), 

which  is the  same  as saying  that  gh is a multiplier   fixing the  addition   set A. Conversely,   we  assume   

that  gh fixes A,  which  is (mod  XV  -     1).  (2.18) Since A is a (v, k, A, g)-addition    set, (2.12) still 

holds.  Together   with  (2.18), 

we have(mod  XV  -     1).     (2.19) Since  A  is nontrivial    and  d  =1=    0, g  is prime   to  v  by  Theorem    

2.3. Hence there   exists  an  integer  f such  that s' = 1       (mod  v). We  substitute    Xgl-1     for  x in  

(2.19)  and  obtain 

(J(Xh) (J(x) = d   

(1 + Xgf-1       + ...+ X(V-I) yf-l)   (mod  XVgf-1     -        1). 

(2.20) However   XV - 1divides  1 and 

1 + xgt-1        + ...+ X(V-I)gf-l   ==  1 + x  + ...+ xv-I       (mod  XV -    1). Thus   (2.20) implies 

(J(Xh) (J(x)  _   d + '\(1 + x  + .., + xV-I)          (mod  XV -    1), 

which  means   that  A is also  a (v, k, '\, h)-addition    set. The  following   corollary   follows  easily. 

COROLLARY      2.6.     Let    A  be  a  nontrivial     (v, k, '\, g)-addition     set   with 

d =1=    0.  Then g2 is a multiplier    fixing    A. 

Corollary   2.6 established    the  existence   of multipliers   for  many  addition sets.  However,   for  

difference   sets,  we have  g  =  -1 and  g2 = 1 (mod  v), which  gives  us  only  the  trivial  multiplier. 

In  the  example   of Section   1, the  set A  = {I, 4} has  -1 as its  only  non- trivial  multiplier.   This is 

interesting   to note  because   -1is never  a multiplier for  a difference  set  [3].Addition  sets with d  =1=    

0and g2 = 1 (mod v) are interesting in another respect. They are closely related  with  a matrix  equation  

first studied  by Ryser  [10]. 

Ryser investigated (0, Ij-rnatrices M of order v which satisfy the matrix equation  M2 =  D + >.1,  where D 

is a diagonal matrix and J is the matrix of all 1'so He showed that apart from certain exceptional matrices, M 

must satisfy 

                                    M2  =  dI  + AJ,                                                 (2.21) 

where in (2.21) the matrix M  has constant  line sum k. 

In   [5],  the  author   investigated   solutions   to   (2.21)  where  M   is  a g-circulant.  Here a g-circulant is a 

v X  v matrix  of rational  numbers,  in which each row (except the first) is obtained  from the preceding row 

by shifting the elements cyclically g columns to the right. One can also define a Hall-polynomial  for a g-

circulant  M  by letting 
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                                                  v-I 

                                    8(x)  =  L m.x', 

                                                  i=O 

where (mo , mI ,..., m"-I) is the first row of M. 

 

THEOREM     2.7.   Let  d and A be rational  numbers.  A  v  X   v g-circulant   M 

satisfies   (2.21) if and only  if the following   statements   hold. 

(i)   d  =1= 0implies  g2 ==   1 (mod v), and 

(ii)   8(x)  8(xY) = d + A(l + x  + ...+ XV-I)   (mod XV  -     1). 

 

If M is a (0, Ij-matrix,  then d and  A are integers.  Furthermore   8(x)  is a  polynomial   with  (0, 1)  

coefficients.  In  this  case,  condition   (ii)  of Theorem  2.7 is exactly the same as Eq.  (2.7) of Theorem  

2.2. Hence  in the (0, I) case, the following is true. 

THEOREM     2.8.     Assume   d  =1=    0.  Then  the existence   of a (0, 1) g-circulant M  satisfying   the 

matrix   equation 

                                                           M2=dI+AJ 

is  equivalent    to  the   existence    of   a  (v, k, A, g)-addition    set   with  g2 ==   1 (mod v). 

 

When d = 0, condition  (i) of Theorem  2.7 is always true. In this case we do not even have the restriction 

that g2 = 1 (mod v). 

 THEOREM     2.9.    The existence  of a (0, 1) g-circulant  M  of size v satisfying the matrix   equation 

                                      M2  =  AI                                        (2.22) 

is  equivalent    to   the   existence    of   (v, k, '\, g)-addition    set   with   the  same parameters. 

The (0, I)-matrices  satisfying the matrix equation M2=    J correspond to central groupoids. In particular,  

(0, 1) g-circulants satisfying the  equation  correspond  to  natural  central  groupoids.  For  a discussion on 

central groupoids,  please see [4]. 

Theorems  2.8 and 2.9 give us a few classes of addition  sets, as will be seen in Section 3. Difference sets 

are, of course, a special class of addition sets. The following theorem  shows that  the value of the parameter  

d is important  in determining whether an addition  set is a difference set. 

 

THEOREM     2.10.   Let  A be a nontrivial  addition  set. If d  = k -   '\, then Is  also  a difference  set. 

Proof      If d  =  k -  1, then 0 can be represented in k ways as ta, + gaj) (mod v)  with  a;  and  a,  in A.  

However,  this  implies that  for  all a, E A, there exists aj in A such that 

 

                                                     a, = (-g) aj         (mod v). 

Thus ( - g) is a multiplier fixing A. By (iii) of Theorem 2.1, k  > ,\.Hence d =1=    O. As   -1 is  prime  to  v,  

Theorem   2.5  implies  that   A  is  also a (v, k, '\, -1) addition  set. In other words, A is a difference set. If A 

is a difference set, then it is clear that  d =  k -   ,\. Thus the value of d characterizes whether or not an 

addition  set is a difference set. 

 From (ii) of Theorem 2.1, d satisfies 

-A  ;:;;d :;:;;k -   A.                                                               (2.23) 

Hence,  for  difference sets,  d  attains  its  maximum  allowed  value.  The case with d =  -,\  also occurs as 

we will see in the next section. 

 

3.  EXAMPLES 

In  this  section,  we will investigate  various  classes  of  addition   sets. Since difference sets are well 

known, we restrict our attention  to addition sets  which are not  difference sets. That  is, we are interested  in 

addition set with d in the range. 

             -A  ~  d < k -   A. 

The first class is derived from Theorem 2.9. Since they represent a slightly generalized version of natural 

central groupoids,  we call them the Natural Central  Groupoid  type, or NCG  type. 
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Natural   Central  Groupoid  (NCG)   Type 

This type has parameters  satisfying k2   = AV, d = 0, and g = k. 

 

THEOREM      3.1.    The  set  A  = {O, 1,2, ... , k  -    I} is a (v, k,  A, k)-addition set  when k2   =  Av. 

Proof     We  will  use  Theorem   2.2.  The  Hall-polynomial for  A    is 

O(x)    = 1 -f-  x   + ...+ Xk-l.    Observe that 

(1  + x   + ...+ Xk-1)(1     + Xk   + ...+ Xk(k-l»       =  1 + x   + ...+ Xk'-l. 

(3.1) 

Since k2   = AV, Eq. (3.1) taken modulo XV  -     1 gives 

O(x)   O(Xk)   = A(1 + x   + ... + XV-I)              (mod XV  -     1). Hence the theorem  is proved. 

Ryser  (R)  Type 

This type corresponds  to a class of (0, I)-matrices  M  satisfying 

M2 =  1+ >J. 

They   were   first   given  in   [10].  The   parameters    satisfy  d  =  I   and 

k2     =  1+ Av. 

 

THEOREM     3.2.    The   set   A  = {O, 1, ... , k  -    I}  is  a  (v, k,  A, k)-addition set  when k2   =  I + Av. 

Proof      The proof is similar to the one for NCG type. 

 

Shifted   Ryser  (SR)  type 

The parameters for this class satisfy d =  -1, k2    =  -1 + AV, and V odd  

THEOREM     3.3.     Let   A  = {O, 1,... , k  -    I}  where  k2     = -1    +- AD   and  D is odd.  There  exists  

an integer  t such  that  t + A modulo  v is a (D, k, A, k)- addition  set. 

Proof      We  will  show  that  t  is  in  fact  the  multiplicative inverse  of 

k  + 1 modulo  v. First  of all, we will show that  k  + 1 is relatively prime to  v. 

Let g.c.d. (k + 1, v) = w. Then we have w I  (k + 1)        2.  

As k2   +-  1 =  AV, 

w I  k2    + 1.  Hence  w I   [(k + 1)2 -   (k2    + 1)], which  reduces  to  w I  2k. 

But  v  is odd.  Hence  w is odd.  Thus  we have  w I  k. But  we also  have w  I k  + 1. So w  =  1. Hence, we 

can talk about the multiplicative    inverse of (k + 1) modulo v. 

Let  t  be  the  multiplicative  inverse  of  (k + 1)  modulo The  Hall- polynomial  for  t + A is 

B(x)  = x'(I  + X   + ...+ Xk-I)       (mod XV  -     1).            (3.2) 

Hence 

B(x) B(xk)  -    xtxtk(l    + X   + ...+ Xk-I)(l  + Xk    + ...+ Xk(k-l»)  (mod XV  -     1).    (3.3) 

Congruence  (3.3) reduces to B(x)  B(xk)  = -1 + ,1(1 + x  + ...+ xV-I)         (mod x" -   1). 

Hence the theorem  is proved. 

It should be noted  that  the condition  v is odd is not restrictive at all. Since d = -1,   Corollary 2.4 implies 

that any nontrivial addition set must have an odd v. A  = {2, 3} is a (5,2,   1, 2)-addition  set, the first of this 

class. The  set {1,4} given before  is merely the  set {2,3}multiplied  by 2 and  reduced modulo  5. 

The remaining classes are all derived from Nth power residues modulo some prime v. So, we will first 

introduce  some material from the theory of cyclotomy.  (For  a  proof  of  some  of the  results  quoted,  

please  see  [1] or [11].)  

Let v =  Nf + 1 be an  odd prime  and  let exbe a fixed primitive  root of v. An integer R  is said to belong to 

the index  class  1 with respect to if there exists an integer x  such that                (mod v). The cyclotomic   

number  (I, m)N counts the number of times R  + 1 belongs to  the  index  class  m when  R belongs  to  

index  class  t. That  is, (l, m)N is the number   of  solutions   x, y  of the  congruence (mod  v), 

  where  the integers   x, yare   chosen  from  0,  1,... ,/   -    1. 

Given  an  odd  prime  v and  an  integer  N, the  set of residues  belonging   to the  index  class     is called  

the  set of Nth power  residues  modulo   v. It should be noted  that  this  set of Nth  power  residues  does  

not  depend   on the choice of  the  primitive   root   and   it  forms   a  subgroup    of  the  group   of  nonzero 

residues   modulo   v. 



NOVATEUR PUBLICATIONS  

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] 

ISSN: 2394-3696 

VOLUME 5, ISSUE 4, Apr-2018 

71 | P a g e  
 

 In  1953, Lehmer   [7] gave  the  necessary   and  sufficient    conditions    for  the existence    of   some   

difference    set   associated     with   Nth    power    residues. The  following   is a generalization    of her  

results  for  addition   sets. 

 the  numbers    (e,O)N  and   (e, e)N indicate.    Hence   we  have  the  rest  of  the theorem. 

In  this  paper   only  the  cases  where  N  = 2 and  N  =  4  are  considered. 

Hopefully,   other  values  of N will give more  addition   sets. 

Difference  sets  arising   from   Nth   power   residues   are  well  known.    In this   section,   we  are   

interested    in  addition    sets  that   are   not   difference sets.  However   these  new  addition    sets  are  in  

many   ways  similar   to  their counterparts     in  difference   sets.  Together    they  give  a  much   better   

picture of  the  role  played   by  Nth   power   residues   in  the  theory   of  addition    sets. For  this reason  

we will also  quote,  without   proof,  the corresponding    results in difference  sets.  Before  we do  so, we 

will introduce   a little  more  material from  cyclotomy. 

Theorem     3.4  established     the   special   role   played    by   the   cyclotomic numbers.  We   define   a   

cyclotomic    matrix    C  =  (Cii)     by   letting    Cil    be the   cyclotomic     number     (i,j)N    for    the   

index    classes    i  and   j,  where 

o ~  i, j  ~  e -   1. In terms  of the  cyclotomic   matrix,  

Theorem   3.4 focuses our  attention    on the  rows  of the matrix. Let  v be an  odd  prime  such  that  v =  2f  

+ 1. Iff is    even,  then  the cyclo-tomic  matrix  is given  in [11, p. 30] as 

o 

o        A      I~, 

1  ~-~-I 

(3.4) 

where  A  =  (f - 2)/2 and  B  = fl2  . Now  we are  ready  to see another   class of addition   sets. The next  

result  was  first  communicated     to  me  by James   Shearer. 

 

 

Negative   Quadratic  Residue   (NQ)   Type 

THEOREM    3.5.     When   v =  4t  + 1  is  a  prime,    the   quadratic    residues modulo   v form    an  

addition   set   with  parameters    v, k, A, d  =  4t  + 1,  2t, 

t, =t  and g is any residue  in the index  class  1. 

Proof      When   v =  4t  + 1 is a  prime,   then  f =  2t  is even.  The  cyclo- tomic  matrix   (3.4) implies  that 

(1,0)   =  (1, 1) =  t. 

  Hence   if we  take  g to  be  any  residue   in  index  class  1, then  Theorem    3.4 implies   that   the  

second   power   residues   form   a  (4t  + 1,21,  I, g)-addition set.  The  value  of d is then  determined    

from  the  equation   k2   =  d + Av. 

 

 Positive   Quadratic   Residue  (PQ) type).      

When v = 4t -   1 is a prime,  the quadratic  residues  modulo  v form   a difference  set with param- eters  v, 

k, A, d  = 41 -    1,21  -    1, t -    1, t. Hence   whenever    v is  an   odd   prime,   the   quadratic     residues   

form   an addition    set.  The  sign  of  d determines    whether   it  is a  positive   type  or  a negative   

type.Let  v be  a  prime   of  the  form   4f  + 1. When  f   is even,  the  cyclotomic numbers   are  given  in  

[11, p.  51] by  the  cyclotomic   matrix together   with  the  relations 

 

16A  =  v -   11 -   6s, 

16B = v -   3 + 2s + 8t, 

16C  =  v  -    3 + 2s, 

16D  =  v  -    3 + 2s  -   81, 

16E  =  v + 1 -   2s, 

 

where  v = S2   + 4t2   with  s = 1 (mod  4) is the  proper   representation     of v; the sign of t is ambiguously   

determined.    Here  a representation    v = S2   + 4t2 is  said  to be proper   if (v, s)  = 1.  



NOVATEUR PUBLICATIONS  

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] 

ISSN: 2394-3696 

VOLUME 5, ISSUE 4, Apr-2018 

72 | P a g e  
 

A proper   representation     of v with  s  = 1 (mod  4) uniquely   identifies   s [8, p.  123]. The  value   of  t is 

also  identified except  for  sign. The  case  N  = 4 gives us two  types  of addition   sets. 

 

Negative   Biquadratic   Residue  (NB)   Type 

THEOREM    3.7.     The fourth  power  residues  of a prime  v = 16t2   + 1form an  addition   set  with  

parameters    v, k,  A, d  =  16t2   + 1,  4t2,     t2,    -t2       and  g  is any residue  in the index  class 2. 

 Proof.     When v  =  16t2   + I, then s  =  I andfis   even. Hence the cyclo- tomic  numbers  C and  E  are 

equal  in (3.5). Therefore  (2,0)  =  (2, I) = (2,2)  =  (2,3)  = (v -   1)/16 =~ (2.      Thus    the   theorem    

follows   from Theorem 3.4. 

THEOREM3.8 (Positive  Biquadratic   Residue  (PB)  type).    The  fourth power   residues  of primes   v =  

4x2   + I,  x  odd, form   a  difference   set  with parameters    v, k,  '\, d  =  4x2   + 1, X2,     (x2   -      1)/4,  

(3x2   + 1)/4. 

 

Negative   Modified   Biquadratic   Residue   (NBO)   Type 

THEOREM3.9.   The   set   of   biquadratic    residues   and   zero   of  a  prime v =  16t2   + 9 form   an  

addition  set  with parameters    v, k,  A, d  =  16t2   + 9, 4t2    + 3, t2    + I,  -t2       and g is any residue in 

the index  class 2. 

Proof.     When  v =  16t2   + 9, then  s  =      I  and f   is even.  Hence  the cyclotomic  numbers  are C =  (v -   

9)/16 and E  =  (v + 7)/16 . Thus 

I + (2,0)  =  I + (2,2)  = (2, I) =  (2,3)  = (v + 7)/16 = t2   + 1. 

 

The theorem  follows from Theorem  3.4. The corresponding  result in difference sets is attributed  to M.  It 

is for the case when v =  4x2   + 9 is a prime with x  odd. The  smallest  addition   set  of  the  NQ  (Negative  

Quadratic   Residue) type is the (5,2,  I, 2)-addition  set given in Section 1. The smallest one of the NB 

(Negative Biquadratic  Residue) type has parameters  v, k, A, g  = 17,4, 1,9. The next smallest one has 

parameters v, k, A, g  = 257,64,  16,9. 

The  smallest  addition  set of  the  NBO  (Negative  Modified  Biquadratic Residue) type has parameters  v, 

k, A, g  = 73, 19, 5,25.  The next one has parameters  v, k, A, g  =  409, 103,26, 121. 

 

4.  CONCLUSION 

We  have  seen  that   addition   sets  are  nontrivial   generalizations   of difference sets. They give rise to 

many new combinatorial objects. Their properties  are very similar to  those  of the  difference sets. Many  

results on difference sets can be generalized to the case of addition sets. In the next paper we will see a 

generalization  of the multiplier theorem and some nonexistence results. Using these results, a computer  

search for addition sets with small parameters  will carry  out.    
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