
NOVATEUR PUBLICATIONS  
INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] 

ISSN: 2394-3696 
VOLUME 5, ISSUE 2, Feb.-2018 

21 | P a g e  

 

EFFECTIVE FEATURE ANALYSIS COMPLETELY BLIND IMAGE 

QUALITY EVALUATOR 
KRISHNA VITTHAL KHARADE  

M.E. Computer Science and Engineering, T.P.C.T’S C.O.E. Osmanabad, Maharashtra, India 

 
MR. P.P. KALYANKAR 

Professor, T.P.C.T’S C.O.E. Osmanabad, Maharashtra, India 

 
 

ABSTRACT 

In our daily lives, we accompany the digital visual information. Various distortions are introduced during 
the exchange, transmission or storage of this digital information. Image quality evaluation refers to the 
evaluation of image quality. This is because some image processing applications depend on this information. 
Image quality can be measured in two ways: subjective method and objective method. A subjective method 
is one by which human judge the image quality using average opinion scoring method (MOS). 
In recent years, there has been growing interest in the development of objective image quality assessment 
(IQA) models that not only monitor image quality degradation and reference image processing systems but 
also optimize various algorithms and systems, Past results are worthy of praise, but there are some important 
issues when applying existing IQA models to real-world applications. These include obvious things such as 
tasks that greatly reduce the complexity of existing IQA algorithms and are easy to use and easy to 
understand. 
Unfortunately, so far, BIQA's method, which does not consider opinion, did not consistently demonstrate 
high-quality prediction accuracy over the method of opinion. Here, we aim to develop BIQA's unknown 
opinion method that can compete with existing opinion methods and possibly overcome. Multivariate 
Gaussian model of image patch is learned from the natural image set by integrating statistical features of the 
natural image obtained from plural signals. The proposed BIQA method does not require distorted sample 
images or subjective quality scores for training, but extensive experiments demonstrate superior quality 
prediction performance for the BIQA method with cutting edge view. 
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1. INTRODUCTION 
The quality of an image is lost due to the occurrence of noise, and these noises are generated during 
information accumulation, transmission, or exchange of information between the devices. A wide range of 
applications depends on this digital information being transmitted. Therefore, in order to evaluate and 
control the quality of these images, quality measurement is necessary. Evaluation of image quality is a 
model that predicts distorted image quality. In the image quality evaluation method, evaluation of quality by 
humans is obtained by the mean opinion score method (MOS), human subjective evaluation is obtained by 
MOS (mean opinion score method), human subjective evaluation is distorted the image will be perceived by 
the average person. 
Quantitative assessment of image perception quality was one of the most difficult problems of modern 
image processing and computational study of vision. The perceptual image quality assessment (IQA) 
method is classified into two categories: subjective evaluation by human and objective evaluation by an 
algorithm designed to imitate subjective judgment. Subjective assessment is the last standard of image 
quality, but it is time consuming, cumbersome, expensive and cannot be implemented in systems that require 
real-time evaluation of image or video quality. However, as the amount of image / video data generated 
everyday increases exponentially, it is impossible to solve these quality problems in a timely manner by 
slow, annoying and expensive subjective visual tests. On the other hand, only the reliable model of IQA can 
satisfy these needs. 
The most important message in this document shows that a "completely blind" IQA model that does not take 
into account opinions can achieve robust quality prediction performance over opinion sensitive models. 
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Such models and algorithms can be used for countless practical applications. These results hope that IQA 
researchers and image experts will more thoroughly consider the possibility of a "fully blind" BIQA model 
that does not take into account the opinion. 
 
2. SYSTEM IMPLEMENTATION 

It is shown that the natural scene statistics (NSS) are excellent indicators of the degree of degradation of the 
quality of distorted images. As a result, the NSS model has been widely used in the design of the BIQA 
algorithm. For example, parameters of generalized Gaussian distribution (GGD) that effectively models 
natural wave coefficients and DCT coefficients of images have been used as characteristics of quality 
prediction. For complex pyramid wavelets, transformations were used to extract similar NSS properties. All 
of these BIQA methods based on the NSS model are opinion methods and learn a regression model that 
associates vectors of extracted NSS characteristics with subjective quality scores. To extract image 
characteristics related to multiple scales and quality directions, we use a log-Gabor filter and extract the 
statistical properties of the filter response. Color distortion is described using statistical properties derived 
from the image intensity distribution in the logarithmic scale opposite color space. 
In general, five types of characteristics are used. All of these characteristics are well known in the NSS 
literature, but are initially adapted together for a completely blind BIQA task. Our experiments show that 
new features can greatly improve the performance of image quality prediction. 
 
3. EXPERIMENTAL DETAILS  

4.  

3.1 STATISTICS OF NORMALIZED LUMINANCE 
It noted that the locally normalized luminance of the gray scale natural photographic image matches the 
Gaussian distribution. This normalization process can be written as follows. 
I (i, j )= I (i, j ) − μ(i, j )(1) 

σ(i, j ) + 1 

are the local image mean and contrast, where ω = {ωk,l|k =−K, ..., K, l = −L, ..., L} defines a unit-volume 
Gaussianwindow. The so-called MSCN coefficients I (i, j ) have been observed to follow a unit normal 
distribution on natural images that have not suffered noticeable quality distortions. 
 
3.2 STATISTICS OF MSCN PRODUCTS 

As pointed out in [10] and [15], image quality informationis also captured by the distribution of the products 
of pairs ofadjacent MSCN coefficients, in particular I (i, j )I(i, j + 1),I (i, j )I (i + 1, j ), I (i, j )I (i + 1, j + 1),  
andI (i, j )I (i + 1, j −1). On both pristine and distorted images,these products are well modeled as following 
a zero mode 

 
Fig. 1. (a) A reference image. Distorted versions of (a) 
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(b) minor Gaussian blur, 

 

 
(c) severe Gaussian blur 

 

 
(d) minor JPEG2K compression 

 

 
(e) severe JPEG2K compression. 
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3.3 GRADIENT STATISTICS 

The gradient of the image is a rich descriptor of the structure of the local image and is, therefore, a 
descriptor of the local quality of the image. We found that by introducing distortion into the image, the 
distribution of the gradient component (partial derivative) and the magnitude of the gradient are modified. I 
will give you an example to demonstrate this fact. First, when strain is introduced, the empirical distribution 
of the component of the gradient of the image and the magnitude of the gradient magnitude is affected. 
Second, the most severe distortion causes a big change in distribution over less severe strain. 
 
3.4 STATISTICS OF LOG-GABOR FILTER RESPONSES 

Because visual cortex neurons selectively respond to stimulus direction and frequency, statistics of multi-
directional and multi-rate filter responses to images are also useful for generating quality-aware BIQA 
features. Here we implement perceptually related Log-Gabor filters to achieve multiscale and multi-
orientation filtering. 
 
3.5 STATISTICS OF COLORS 

To capture even more the statistical properties that are particularly related to the color in the image, we used 
a simple classic that showed that the distribution of the photographic image data coincides with the Gaussian 
probability model in the logarithmic color space. It depends on the NSS model.Given an RGB image having 
three channels R(i, j ), G(i, j ),and B(i, j ), first convert it into a logarithmic signal with mean subtracted: 
R(i, j ) = log R(i, j ) − μR 

G(i, j ) = logG(i, j ) − μG 

B(i, j ) = log B(i, j ) – μB 

 

whereμR, μGand μBare the mean values of log R(i, j),log G(i, j ) and log B(i, j ), respectively, over the entire 
image. Then, image pixels expressed in (R, G, B) space are projectedonto an opponent color space: 
l1(x, y) = (R + G + B)/√3 

l2(x, y) = (R + G − 2B)/√6 

l3(x, y) = (R − G)/√2 

 
PRISTINE MVG MODEL LEARNING 
We will learn the original MVG model to create a representation of the NSS characteristics of the original 
image of nature. In IL-NIQE, the original MVG model acts as a "reference" to evaluate the quality of a 
given natural image patch. In order to know the desired model, we will collect a set of high-quality natural 
images from the internet. Four volunteers participated and were asked to look for 100 high-quality images in 
each of four categories: people, plants, animals, and artifacts. This is similar to the process used to create the 
original corpus from which the NIQE index was created. Most natural images fall into these categories. 
Next, each of the 400 images taken was visually inspected by seven volunteer observers. If five or more of 
the seven observers found that the image quality was very good, the images were saved. 
 
5. RESULT 

A. DATABASES 

Four benchmark large-scale IQA datasets are used to evaluate the proposed IL-NIQE index, including 
TID2013, CSIQ, LIVE, and LIVE Multiply Distortion.  
 

B. PERFORMANCE ON EACH INDIVIDUAL DATASET 

Because opinion methods need to use distorted images in the data set to learn the model, divide the data set 
into a training subset and a test subset. We present this result in three partitions. Distorted images related to 
80%, 50%, 10% of the reference images are used for training and the rest are used for testing. Partitions are 
run 1,000 times at random and the average results are reported in Table 1. IL-NIQE, NIQE, and QAC do not 
require dataset training but report the results in a subset of comparison consistent. 
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Table 1 Results of Performance Evaluation on Each Individual Dataset 

Datasets Methods 
80% 50% 10% 

SRCC PLCC SRCC PLCC SRCC PLCC 

TID2013 

BIQI 0.349  0.366 0.332  0.332 0.199  0.250 

BRISQUE 0.573  0.651 0.563  0.645 0.513  0.587 

BLIINDS2 0.536  0.628 0.458  0.480 0.402  0.447 

DIIVINE 0.549  0.654 0.503  0.602 0.330  0.391 

CORNIA 0.549  0.613 0.573  0.652 0.508  0.603 

NIQE 0.317  0.426 0.317  0.420 0.313  0.398 

QAC 0.390  0.495 0.390  0.489 0.372  0.435 

IL-NIQE 0.521  0.648 0.513  0.641 0.494  0.590 

CSIQ 

BIQI 0.092  0.237 0.092  0.396 0.020  0.311 

BRISQUE 0.775  0.817 0.736  0.781 0.545  0.596 

BLIINDS2 0.780  0.832 0.749  0.806 0.628  0.688 

DIIVINE 0.757  0.795 0.652  0.716 0.441  0.492 

CORNIA 0.714  0.781 0.678  0.754 0.638  0.732 

NIQE 0.627  0.725 0.626  0.716 0.624  0.714 

QAC 0.486  0.654 0.494  0.706 0.490   0.707 

IL-NIQE 0.822  0.865 0.814  0.854 0.813  0.852 

LIVE 

BIQI 0.825  0.840 0.739  0.764 0.547  0.623 

BRISQUE 0.933  0.931 0.917  0.919 0.806  0.816 

BLIINDS2 0.924  0.927 0.901  0.901 0.836  0.834 

DIIVINE 0.884  0.893 0.858  0.866 0.695  0.701 

CORNIA 0.940  0.944 0.933  0.934 0.893  0.894 

NIQE 0.908  0.908 0.905  0.904 0.905  0.903 

QAC 0.874  0.868 0.869  0.864 0.866  0.860 

IL-NIQE 0.902  0.906 0.899  0.903 0.899  0.903 

MD1 

BIQI 0.769  0.831 0.580  0.663 0.159  0.457 

BRISQUE 0.887  0.921 0.851  0.873 0.829  0.860 

BLIINDS2 0.885  0.925 0.841  0.879 0.823  0.859 

DIIVINE 0.846  0.891 0.805  0.836 0.631  0.675 

CORNIA 0.904  0.931 0.878  0.905 0.855  0.889 

NIQE 0.909  0.942 0.883  0.921 0.874  0.912 

QAC 0.418  0.597 0.406  0.552 0.397  0.541 

IL-NIQE 0.911  0.930 0.899  0.916 0.893  0.907 

MD2 

BIQI 0.897  0.919 0.835  0.860 0.769  0.773 

BRISQUE 0.888  0.915 0.864  0.881 0.849  0.867 

BLIINDS2 0.893  0.910 0.852  0.874 0.850  0.868 

DIIVINE 0.888  0.916 0.855  0.880 0.832  0.851 

CORNIA 0.908  0.920 0.876  0.890 0.843  0.866 

NIQE 0.834  0.884 0.808  0.860 0.796  0.852 

QAC 0.501  0.718 0.480  0.689 0.473  0.678 

IL-NIQE 0.928  0.915 0.890  0.895 0.882  0.896 

 

C. CROSS-DATASETS PERFORMANCE EVALUATION 

 

Table 2 Evaluation Results when Trained on LIVE 

  
TID2013 CSIQ MD1 MD2 

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC 

BIQI 0.394  0.468 0.619  0.695 0.654  0.774 0.490   0.766 
BRISQUE 0.367  0.475 0.557  0.742 0.791  0.866 0.299  0.459 
BLIINDS2 0.393  0.470 0.577  0.724 0.665  0.710 0.015  0.302 
DIIVINE 0.355  0.545 0.596  0.697 0.708  0.767 0.602   0.702 
CORNIA 0.429  0.575 0.663  0.764 0.839  0.871 0.841   0.864 

NIQE 0.311  0.398 0.627  0.716 0.871  0.909 0.795   0.848 
QAC 0.372  0.437 0.490  0.708 0.396  0.538 0.471   0.672 

IL-NIQE 0.494  0.589 0.815  0.854 0.891  0.905 0.882   0.897 

 

Table 3 Weighted-average Performance Evaluation Based on Table 2 

 
BIQI BRISQUE BLIINDS2 DIIVINE CORNIA NIQE QAC IL-NIQE 

SRCC 0.458 0.424 0.424 0.435 0.519 0.429 0.402 0.599 
PLCC 0.545 0.548 0.525 0.595 0.643 0.512 0.509 0.675 
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Table 4 Evaluation Results when Trained on TID2013 

 
LIVE CSIQ MD1 MD2 

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC 
BIQI 0.047  0.311 0.010  0.181 0.156  0.175 0.332  0.380 

BRISQUE 0.088  0.108 0.639  0.728 0.625  0.807 0.184  0.591 
BLIINDS2 0.076  0.089 0.456  0.527 0.507  0.690 0.032  0.222 
DIIVINE 0.042  0.093 0.146  0.255 0.639  0.669 0.252  0.367 
CORNIA 0.097  0.132 0.656  0.750 0.772  0.847 0.655  0.719 

NIQE 0.906  0.904 0.627  0.716 0.871  0.909 0.795  0.848 
QAC 0.868  0.863 0.490  0.708 0.396  0.538 0.471  0.672 

IL-NIQE 0.898  0.903 0.815  0.854 0.891  0.905 0.882  0.897 

 

Table 5 Weighted-average Performance Evaluation Based on Table 4 

 
BIQI BRISQUE BLIINDS2 DIIVINE CORNIA NIQE QAC IL-NIQE 

SRCC 0.074 0.384 0.275 0.172 0.461 0.775 0.618 0.861 
PLCC 0.250 0.491 0.349 0.251 0.527 0.821 0.744 0.882 

 
For five optionally conscious BIQA methods, the original author provides a quality prediction model formed 
through the LIVE data set. Therefore, test them with other data sets directly using them. The results are 
shown in Table 2. For each performance index, the two best results are highlighted in bold. In Table 3 we 
present a weighted average SRCC and PLCC index for all methods in the four data sets and the weight 
assigned to each data set is linearly dependent on the number of distorted images included in that data set. In 
addition, we train opinion methods on the entire TID 2013 dataset and run tests on the remaining datasets. 
The results are shown in Tables 4 and 5. 
 
6.  CONCLUSION 

We proposed a new effective BIQA method to expand and improve the new "fully blind" concept of the 
introduced IQA. The new model IL-NIQE is used to extract five types of NSS characteristics from the 
original natural picture collection, to learn the multivariate Gaussian model (MVG) of the original image. 
For a given test image, the quality of those patches is evaluated, then the patch quality scores are averaged 
and a general quality score is obtained. 
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