OVERVIEW OF BAND NOTCHING METHODS USED IN UWB ANTENNA

[PAPER ID ICITER-D195]

MISS.KALYANI M. DANGE

PG student, Dept. of E&TC, Amrutvahini College of Engineering, Sangamner, Maharashtra, India kalyanidange92@gmail.com

PROF. MRS. R. P. LABADE

Head, Dept. of E&TC, Amrutvahini College of Engineering, Sangamner, Maharashtra, India rplabade@gmail.com

ABSTRACT:

The Federal communication commission (FCC) allocates the 3.1 - 10.6 GHz band the ultrawideband (UWB) applications. But due to some alreadv existing systems such WiMAX (IEEE802.16:3.3-3.7GHz), C-band satellite communication (3.7-4.2GHz), WLAN (IEEE802.11a: 5.15-5.825GHz), X-band satellite communication (7.25-7.75GHz), ITU (International Telecommunication Union: 8.025-8.4 GHz) band causes electromagnetic interference with UWB. So to remove such a interference between UWB and other narrow bands different notching techniques used such as tuning stub, shaped slot, parasitic element, and the fractal geometry. In this paper a comparison will be done between these techniques.

KEYWORDS: UWB, slot antenna, band notching characteristics.

INTRODUCTION:

Regarding to the allocation and permits of the 3.1 GHz to 10.6 GHz unlicensed frequency band with 7.5 GHz wide bandwidth by the FCC, for the commercial use as a UWB[1] This UWB system holds the attention of all researchers day by day increases due to its advantages such as small size, light in weight, low cost, and high radiation efficiency. Small planar monopole antenna with different geometries is suitable to fulfill all advantages of UWB antenna.

METHODS FOR ACHIEVING BAND NOTCH CHARACTERISTICS:

In reference [2], to create an extra band outside the UWB frequency range, centered at the 2.4-GHz Bluetooth band, a quarter-wavelength stub is attached to the high concentrated current area in the ground plane. Two notch bands, centered at 3.5-GHz WiMAX and 5.8-GHz WLAN, are also created by placing two stubs similar to that of the extra band.

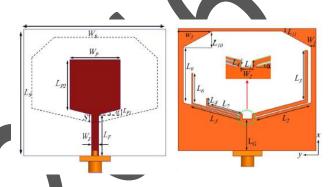


Fig.1: Geometry of the antenna. (a) Top view (b) Bottom view.[2]

In reference [3], single band-notch function is provided by cutting a pair of L-shaped slits in the corners of a square radiating patch, and dual band notch characteristic is obtained by cutting an E-shaped slot in the radiating patch

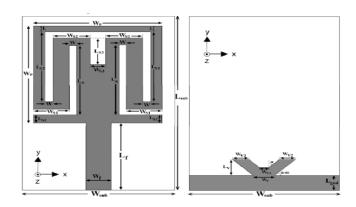


Fig. 2. Geometry of the dual band notched antenna. (a)

Top view. (b) Bottom view. [3]

In reference [4], to achieve dual notched bands characteristics, a T-shaped stub embedded in the square slot of the radiation patch and a pair of U-shaped parasitic strips beside the feed line is used.

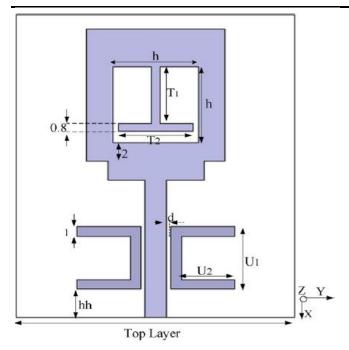


Fig. 3. Geometry of the dual band notched antenna. [4]

In reference [5], the antenna uses three openended quarter-wavelength slots to create tripleband-notched characteristics in 3.3–3.7 GHz for WiMAX,5.15–5.825 GHz for WLAN, and 7.25–7.75 GHz for downlink of X-band satellite communication systems, respectively.

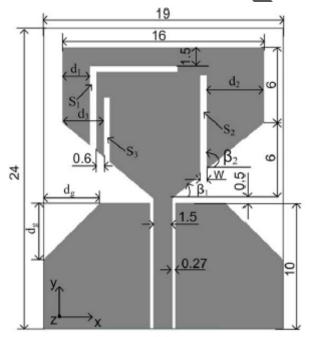


Fig. 4: Geometry of the antenna..[5]

In reference [6], by employing a pair of C-shaped stubs on the back surface of the substrate, dual band-notch function can be obtained through 5.1–6.2-GHz (WLAN) and 3–3.8-GHz (WiMAX) bands.

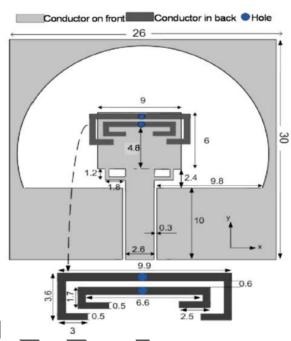


Fig. 5. Geometry of the antenna. [6]

In reference [7], to generate single bandnotchedcharacteristics, we use an inverted T-shaped slot, surrounded bya C-shaped slot, in the radiating patch. By adding an inverted T-shaped parasitic structure inside the inverted T-shaped slot onthe radiating patch, a dual band-notched function is achieved, and also by inserting this parasitic structure, additional resonanceis excited, and hence much wider impedance bandwidth can be produced, especially at the higher band.

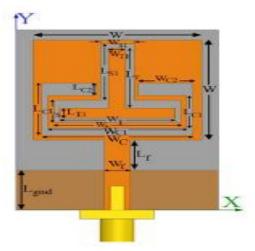


Fig. 6: Geometry of the antenna..[7]

In reference [8], a 1/3 λ rectangular metal strip producing a 1.0 λ loop path with the corresponding antenna element is used to obtain the notched frequency

from 5.15 to 5.85 GHz.For the rejected band of 3.30–3.70 GHz, a $1/4\lambda$ open slot is etched in to the radiator.

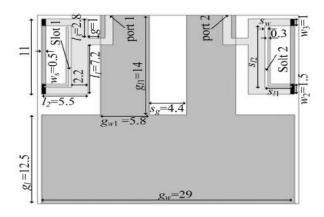


Fig. 7: Geometry of the antenna..[8]

In reference [9] the proposed antenna is fed by micro strip line, and it consists of square radiating patch on the top layer with a slotted-parasitic patch on the bottom layer of the antenna. The parasitic patch acts as a notch filtering element to reject the desired frequency band 5.15 - 5.825 GHz. In [10] a CPW fed UWB antenna which is terminated to a fractal patch. It has a simple structure with only one layer of dielectric substrate and metallization. It has notched band from 4.65 to 6.08 GHz. The table-1 gives the comparison of band notch antennas.

In reference [11], a simple and compact coplanar waveguide (CPW)- fed ultra wideband is presented. The proposed antenna consists of a circular patch with triangular slot, which is etched onto FR4 printed circuit board (PCB).

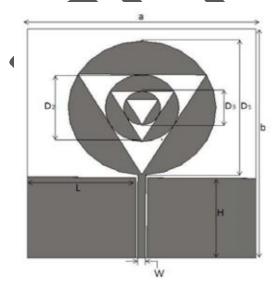


Fig. 8: Geometry of the antenna.[11]

Antenna	Notched Band	Techniques Used	Ref.
	Notched Band	reciniques oseu	Pap
Туре			er
Slot	WiMAX (3.5GHz), WLAN	Two stubs in the	[2]
antenna	(5.8GHz)	ground plane	[2]
Monopole	WiMAX (3.47–4.33),	By adding L and E	[3]
antenna	WLAN (5.11-5.94GHz)	shaped slots in patch	[3]
Novel	WiMAX (3.3-4.0GHz),	T-shaped stub	[4]
antenna	WLAN (5.05-5.90GHz)	embedded in	[4]
antenna	WEAR (5.05-5.70dHz)	the square slot of the	
		radiation patch and a	
		pair of U-shaped	
		parasitic	
		strips beside the feed	
		line	
		ille	
Monopole	WiMAX (3.3-3.7GHz),	three open-ended	[5]
antenna	WLAN(5.15-5.825CHz)	quarter-wavelength	[5]
antenna	X-band satellite	slots	
	communication systems	51015	
	(7.25–7.75GHZ)		
Novel	WLAN(5.1-6.2 GHz),	inserting a pair of	[6]
Antenna	WiMAX(3-3.8GHz) and	inserting a pair of nested C-shaped stubs	լօյ
Antenna	WIMAX(3-3.6GHZ) allu	on the back surface of	
		the substrate	
		the substrate	
Printed	WiMAX(3.5/5.5 GHz),	Inverted T-shaped	[7]
monopoe	WLAN (5.2/5.8 GHz) and	parasitic structure	[,]
antenna	C-band (4-GHz)	inside the inverted T-	
	C Data (1 GHZ)	shaped slot on the	
		radiating patch	
MIMO	WiMAX (3.30-3.70GHz)	metal strip and open	[8]
antenna	WLAN (5.15 to 5.825	slot are etched into	[-]
	GHz)	the radiator	
Microstrip	WLAN (5.15- 5.825 GHz)	Parasitic Element	[9]
fed UWB	(0.10 0.020 0.12)		[-]
Antenna			
CWP fed	WLAN (4.65- 6.08 GHz)	fractal patch	[10]
UWB	(== ====)	<u>r</u>	,
Antenna			
Fractal	WiMAX(3.3-3.6GHz)	fractal patch	[11]
Antenna	WLAN (5-6 GHz)	patell	[-1]
11110011110			l

CONCLUSION:

The UWB system covers the wide frequency band from 3.1GHz to 10.6GHz. There are some narrow band communication systems such as WiMAX, WLAN, X-band Satellite Communication etc. generated electromagnetic interference with UWB system. So it is very essential to notched these bands. In this study different band-notched characteristics for compact UWB antennas have been presented. The band-notched characteristics using the shaped slot, meandered slots, split ring resonators, EBG, tuning stub parasitic element, and fractal geometry and other methods of antenna designs are used to achieve band notch characteristics.

REFERENCES:

- Federal Communications Commission, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission system from 3. 1 to 10. 6 GHz," in Federal Communications Commission, pp. 98–153, ET-Docket, Washington, DC, USA, 2002.
- ii. Mohammad Mehdi SamadiTaheri, Hamid Reza Hassani, and Sajad Mohammad Ali Nezhad, "UWB Printed Slot Antenna With Bluetoothand Dual Notch Bands," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 10, 2011
- iii. M. Mehranpour, J. Nourinia, Ch. Ghobadi, and M. Ojaroudi, "Dual Band-Notched Square Monopole Antenna for Ultrawideband Applications," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012
- iv. Wen Jiang and WenquanChe, "A Novel UWB Antenna With Dual Notched Bands forWiMAX and WLAN Applications," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012
- v. Dang Trang Nguyen, Dong Hyun Lee, and Hyun Chang Park, "Very Compact Printed Triple Band-Notched UWB Antenna With Quarter Wavelength Slots," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012
- vi. Seyed Ramin Emadian, Changiz Ghobadi, Javad Nourinia, Mir Hamed Mirmozafari, and Javad Pourahmadazar, , Bandwidth Enhancement of CPW-Fed Circle-Like Slot Antenna With Dual Band-Notched Characteristic," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012
- vii. Nasser Ojaroudi and Mohammad Ojaroudi, "Novel Design of Dual Band-Notched Monopole Antenna With Bandwidth Enhancementfor UWB Applications," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 12, 2013.
- viii. Jian-Feng Li, Qing-Xin Chu, Senior Member, Zhi-Hui Li, and Xing-Xing Xia, "Compact Dual Band-Notched UWB MIMO Antenna With High Isolation," IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 9, SEPTEMBER 2013
- ix. N. H. M. Sobli and H. E. Abd-El-Raouf, "Design of a Compact Printed Band-Notched Antenna for Ultra Wide-band Communications," Progress in Electromagnetic Research M, Vol. 3, 2008, pp. 57-78

- x. A. A. LotfiNeyestanak, M. R. AzadiNaeini, M. Naser-Moghadasi and Gh. Dadashzadeh, "Band Notched CPW Fed Hexagonal Fractal Antenna," Journal of Electro-magnetic Waves and Applications, Vol. 23, No. 17, 2009, pp. 2461-2470
- xi. S.Natarajamani, Santanu Kumar Behera&Sarat Kumar Patra, "Planar UWB Fractal Antenna with Band-Notched Characteristics," International Conference on Electronics Systems (ICES-2011), 7-9 Jan 2011, NIT Rourkela, India.