NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]
ISSN: 2394-3696

VOLUME 7, ISSUE 5, May-2020

ON THE MEAN VALUES OF AN ENTIRE FUNCTION REPRESENTED

BY A DIRICHLET SERIES
DR. PRANEETA VERMA
Starex University, Gurgaon, India
pvpraneeta@gmail.com

ABSTRACT
In this paper, we obtain some results for the mean value of an entire Dirichlet series.

THEOREM 1. (i) ForO<k <,0>1

/O*S lim loglog N, (o) < @
ﬂ/* O—® O'
Under the additional condition on {4},
0<lim sup lcfn =D<o0, (A)
(a) Becomes
loglog N
lim P M =P =r (b)
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(ii) For 0<k <0,0 >0
lim 5 loglog N;s (o) < (©)
O—>0 0

In fact for the truth of 'lim sup' part of (b) the following condition on {4 } is sufficient.
im 198" _ . (A
oo A logd,

THEOREM 2. (i) Foro>0, 0<k<oo,
logN;, (o) ;

fim G — e <, (0<p<0). (d)
(i) Foro>1, 0<k<oo and under the additional condition (A)
logN, (o >
Ftim 28N e (e)
Y oo epo— roe
In particular case, if D =0,
N;, (o
lim 77log 4% =7 =7 0
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INTRODUCTION: In the usual notation,
f(s) =Z ae’, (s=c+it),0<A, <A, (n>1)limi, =o,
1 n—o0

Is an entire function in the sense that the Dirichlet series representing it, is absolutely convergent for
all finite s and possesses two generally different pairs of orders:
sup loglogM (o) P,

b
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lim .Sup loglog 1t (o) _ p*;
n—>0 lnf o ﬂ*

Where 0 < A, p<o0,0< A, p. <0,and M (o), (o) their usual meanings, viz.
Lub. |f(c7+it)

0 <<
The type T, t associated with p and type T, t, associate with p, are defined in the usual way as follow:

e(aﬂ't)in |

M(o) = . u(0)=max|a,

sup logM (o) T

lim , (0<p<oo
oo inf e’ t O<p )

. sup logu(o) T

lim,  —~ ————= , (0<p. <)
oo inf  e”? t.

The mean values of t (s) are defined as follows:

5 .1 N
(1,(0)}° =4, ()= Tlgggﬂf(amj dt, 0<5 <, (1.1)

1 ¢ .
sz(a):e7 j I,(x)e™dx

s

) 1 F 5 0<d<w

= lim —— x+it) e“dxdt | 1.2
7w 2Te*” _[O_J; £ Gxovit) 0<k<oo (1-2)

Clearly p, < pand A. <A.There are entire Dirichlet series for which p, < p, 4, <4 (sec[9],Satz 4).

So, we have generally to distinguish between the two orders of an entire Dirichlet series and its types

associated with these orders.

THEOREM 1. (i) ForO<k <o, 52>1

P < i o 108108 N0k (0) 2.1)

O —>0 lo}

Under the additional condition on {4},

0 < lim ** kf” =D<w, (A)
(2.1) becomes
log log N,
lim 77 28RO gy 22)
(ii) For 0<k <,0>0
i o J0E10E N (@), 03
g—>%0 O'
In fact for the truth of 'lim sup' part of (2.2) the following condition on {4, } is sufficient.
m 18" _ (A)

1 =
o= A logA,
Proof. For fixed o,

flo+it) = Z(anel"a)e’%"t, (-0 <t <)
1
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is an absolutely and uniformly convergent function of ¢ and hence ([2], p.6) a function of ¢ which is

5,5 >0 is also a function of ¢ which is u.a.p., as shown by

uniformly almost periodic (briefly u.a.p.) | f(o+it)
familiar considerations (e.g. as in [2] p.3) involving the following well known inequalities for a >0, b >0.
(a+b)’ <a’ +b°if 0<S5<1l,a’ -b° < 5;4 (a=b), if 6=>1,a>b.
By the result ([2], p. 12) the mean value of |f(a +it) °,5>0,defined by 4, (o) exists.

For 6 >0 it is obvious that

I s(0)<M(0o).
This, with (1.2) will give us
N, o) <Y l(c") . (2.4)
From which it follows that
l;wﬁsﬁwﬁj,0<k<oo, 0>0. (2.5)

This formula gives us

.1k ,
p(o) <lim— jT \f (o +it)|dt = I,(0)
1 1

. . 1§ PR S B
If 6>1, 1 t by Holder integral i lit <lim| — +it) dt| |— |dt
we also get by Holder integral inequality (o) T‘>°°|:2T J;| f(o+i )| } {271 I }

-T
1 1
where —+— =1. Hence
S O

u(o)<ly(o) foroz=l.
From (1.2), we have for 4 >0,

Ny, (0+h)> %‘7) (1—e™) (2.6)

This leads to
loglog Ny, (o +h) ., loglog (o) to
(o+h) (o+h)
Proceedings to limits, we get
loglog N; (o)

)

li sup
inf
O —>®0 O

Combining (2.5) and (2.7), we get
wp loglog Ny, (o) <
— 1

inf

> (2.7)

< lim
* o0 o
To prove (2.2), we use the known result ([10], p. 68) that, under the condition (A),

M(o)<K u(c+D+¢)
where ¢&is an arbitrary small positive number, K is a constant depending on D and &. This gives
p<p.and A < A but p.<pand A. <A always. Thus, (2.2) proved.
It is known that under the condition (A")

A log A
20 98% 1),

£ =lim sup

Further, from the result of Reddy [8] we conclude that
A, log A

T

P, =lim sup

n—>0 log an
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Thus, we have completed the proof of the theorem

THEOREM 2. (i) Foro>0,0<k <,
sup log Nﬁ,k (O-)

lim F
o inf e/JO'

(i) For 6>1,0<k <oo and under the condition (A)

sup IOg N&,k(a) <T <L e

<T (0< p<o). (3.1)

=

tT: Silill inf epo' Tt Tt PP (32)
In particular case, if D =0,
N; (o

lim 2 log ~24(% = (33)

Proof. From (2.4), we get

1~ sup 10g Nﬁ,k (O-) < 1 sup log M(G)
im ;¢ ——————<Ilim [{————.
o> ep o—®© ep

From which (3.1) follows.
To prove (3.2), we use (2.4), (2.6) and the known result M(c)<K p(o+ D+ ¢)[10], where &£ is an

arbitrary small positive number and K is constant depending on D and & . We have
llm sup M < llm sup IOgM(O-) < llm sup log# (O- +D+ 6‘)

inf epo- o0 inf epa— P inf epo-

T—>0

And

lim & log(9) _jim fﬁ?wﬁ lim :FM-
o0 e’ oo e’ oo e’

Combining these two, we get desired conclusion (3.2). The particular case (3.3) is obvious.
Conclusion: . Our theorem includes the results of Jain [5], which in turn includes the theorem of Juneja [6]
and also a theorem of Gupta [3]. The method of proofs of our results is different from that of Jain. Jain has
used in his proof the following result of Kamthan [7]

Finally, I take this opportunity to thanks Dr. J.P. Singh, for his valuable suggestions in the preparation

of this paper.
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