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ABSTRACT In this paper, we obtain some results for the mean value of an entire Dirichlet series.  
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 Is an entire function in the sense that the Dirichlet series representing it, is absolutely convergent for 
all finite s and possesses two generally different pairs of orders: 
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 Clearly  * and .*   There are entire Dirichlet series for which ).4],9[(sec,* Satz    
So, we have generally to distinguish between the two orders of an entire Dirichlet series and its types 
associated with these orders.  
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 is an absolutely and uniformly convergent function of t and hence ([2], p.6) a function of t which is 
uniformly almost periodic (briefly u.a.p.) 0,)(   itf  is also a function of t which is u.a.p., as shown by 
familiar considerations (e.g. as in [2] p.3) involving the following well known inequalities for a >0, b >0. 
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 To prove (2.2), we use the known result ([10], p. 68) that, under the condition (A), 
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 Thus, we have completed the proof of the theorem 
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 To prove (3.2), we use (2.4), (2.6) and the known result ],10[)()(   DKM  where   is an 
arbitrary small positive number and K is constant depending on D and . We have 
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 Combining these two, we get desired conclusion (3.2). The particular case (3.3) is obvious. 
Conclusion: . Our theorem includes the results of Jain [5], which in turn includes the theorem of Juneja [6] 
and also a theorem of Gupta [3]. The method of proofs of our results is different from that of Jain. Jain has 
used in his proof the following result of Kamthan [7] 
 Finally, I take this opportunity to thanks Dr. J.P. Singh, for his valuable suggestions in the preparation 
of this paper. 
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