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Abstract 

Recent research works on mathematical inequalities shows the importance bounds of polynomial-

exponential type for various functions. In this article, we have provided polynomial-exponential type bounds 

(1 ±
1

4
x2) eαx2

for inverse trigonometric function sin−1 x /x which refines the inequalities existed in the 

literature. 
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Introduction: 

The arcsine function is useful in navigation, engineering, and other sciences. Traditionally, it is used to 

determine the measure of an angle between the known two sides of right angled triangle. The graph of this 

function on domain (0,1) is bounded between 1 and π/2, and many researchers have studied refined bounds 

of it. We depict some of them here, which are of our interest. 

  

One of the complicated approximations to arcsine function was established by Edward Neuman [9] given by 

(1.1) in terms of inverse tangent function, 
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(
tanh−1 ω2

ω2
)

2

≤
sin−1 x

x
≤ (

tanh−1 ω2

ω2(1 − ω4)
)

1
2

, where ω2 =
1 − √1 − x2

2
      (1.1) 

 

* - Corresponding Author,sumedhmaths@gmail.com   

Dhaigude & Thool [7] established a double inequality (1.2) with exponential bounds of polynomial kind, 

1

(1 −
2x2

3
)

η1
<

sin−1 x

x
<

1

(1 −
2x2

3
)

η2
                                                                      (1.2) 

where x ∈ (0,1), l is any real number in (0,1), and η1 = 1/4 and η2 = ln (
l

sin−1 l
) / ln (1 −

2l2

3
) are the best 

possible constants s. t. (1.2) holds.  

 

1 +
x2

6
<

sin−1 x

x
< 1 + (

π − 2

2
) x2, x ∈ (0,1)                                             (1.3) 

 

6

6 − x2
<

sin−1 x

x
<

π

π − (π − 2)x2
, x ∈ (0,1)                                                   (1.4) 

 

 Dhaigude & Bagul [6] have given simple efficient bounds in the double inequalities (1.3) and (1.4), 

where one can observe that (1.4) is the refinement of (1.3). The exponential type of bounds for arcsine 

function was corroborated by Bagul and Bagul et.al. in [2] and [3] respectively, the corresponding double 

inequality is given by (1.5) as follows 

 

ex2/6 <
sin−1 x

x
< eln (π/2)x2

, x ∈ (0,1)                                                               (1.5) 

 

The double inequality (1.5) provides sharp lower and upper bounds than that of (1.3). Moreover, the lower 

bound in (1.4) is sharper than that of the lower bound in (1.5). One can more details in [2, 3, 7, 9] and 

references therein about the inequalities of arcsine function. 

  

Recently, the polynomial-exponential type have been discussed for an exponential function  by Chesneau 

[5]. Also, Bagul et.al. [4] have discussed the bounds of polynomial-exponential type for sinc and hyperbolic 

sinc functions. In [8], the authors have discussed the same bounds for tangent function. This shows that the 

researchers are quite interested in finding such type of bounds, which motivates us to write this article, by 

providing polynomial-exponential type bounds (1 ±
1

4
x2) eαx2

for arcsine function. We will discuss them in 

next sections. 

  

Two Theorems: 

 This section is dedicated for the two theorems, their statements are as follows: 

 

Theorem 2.1  

The double inequality (2.1) holds true for all real numbers in (0,1),  
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(1 −
x2

4
) eln(

8

3π
)x2

<
x

sin−1 x
< (1 −

x2

4
) ex2/12 ,                                                        (2.1)     

                  

where ln (
8

3π
) and 

1

12
 are the best possible constants. 

Theorem 2.2  

The double inequality (2.2) holds true for all real numbers in (0,1),  

 

(1 +
𝑥2

4
) 𝑒𝑙𝑛(

8

5𝜋
)𝑥2

<
𝑥

𝑠𝑖𝑛−1 𝑥
< (1 +

𝑥2

4
) 𝑒− (5/12)𝑥2

,                                                  (2.2)    

where 𝑙𝑛 (
8

5𝜋
) and 

−5

12
 are the best possible constants. 

 

Preliminaries & Lemmas: 

In this section, we write some preliminary results and required lemmas that are required to prove theorems 

2.1 and 2.2. First we state the celebrated lemma which is known as l’Hˆopital’s rule of monotonicity ([1] p. 

10)(see also [11, 12]).  

 

Lemma 3.1 (l’Hˆopital’s rule of monotonicity, [1,11,12])  

Let 𝛼, 𝛽 be two real valued functions which are continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), where 

−∞ <  𝑎 <  𝑏 <  ∞ and 𝛽′(𝑥) ≠  0,  ∀𝑥 ∈  (𝑎, 𝑏). Let, 

 

𝑟1(𝑥) =
𝛼(𝑥) −  𝛼(𝑎)

 𝛽(𝑥) −  𝛽(𝑎)
 𝑎𝑛𝑑 𝑟2(𝑥) =

𝛼(𝑥) −  𝛼(𝑏)

 𝛽(𝑥) −  𝛽(𝑏)
 . 

Then  

i) 𝑟1(𝑥) and 𝑟2(𝑥) are increasing on (𝑎, 𝑏) if  
𝛼′

𝛽′  is increasing on (𝑎, 𝑏)  and 

ii)  𝑟1(𝑥) and 𝑟2(𝑥) are decreasing on (𝑎, 𝑏) if  
𝛼′

𝛽′
  is decreasing on (𝑎, 𝑏).  

The strictness of the monotonicity of  𝑟1(𝑥) and 𝑟2(𝑥) depends on the strictness of monotonicity of  
𝛼′

𝛽′
 .  

 

 Next lemma gives us, the power series expansion of arcsine function that can be seen in ([10], 

1.645). 

 

Lemma 3.2 

If 𝑥 ∈ (0,1), then we have  

𝑠𝑖𝑛−1 𝑥

√1 − 𝑥2
= ∑ 𝑎𝑘𝑥2𝑘+1

∞

𝑘=0

                                                                                                   (3.1) 

 

and  
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(𝑠𝑖𝑛−1 𝑥)2 = ∑ 𝑏𝑘𝑥2𝑘+2

∞

𝑘=0

                                                                                                 (3.2) 

 

where  𝑎𝑘 = (𝑘 + 1)𝑏𝑘  𝑎𝑛𝑑  𝑏𝑘 =
22𝑘(𝑘!)2

(2𝑘+1)!(𝑘+1)
 .                                                             

 

Now, we provide four lemmas which are key ingredients to prove the main theorems of this article. 

Lemma 3.3 

If 𝑘 = 0, 1, 2, 3, … …, then  

2𝑎𝑘 − 17𝑎𝑘+1 + 40𝑎𝑘+2 − 16𝑎𝑘+3 + 2𝑏𝑘 + 14𝑏𝑘+1 − 48𝑏𝑘+2 + 32𝑏𝑘+3 > 0.    (3.3) 

Lemma 3.4 

If  𝑥 ∈ (0,1), then  

𝑥2(𝑥2 − 4)2 + 2(𝑥4 + 8𝑥2 − 16)(1 − 𝑥2)(𝑠𝑖𝑛−1 𝑥)2 

<
(2𝑥3 − 𝑥)(𝑥2 − 4)2(𝑠𝑖𝑛−1 𝑥)

√1 − 𝑥2
                                                                                          (3.4) 

 

Lemma 3.5 

If 𝑘 = 0, 1, 2, 3, … …, then  

2𝑎𝑘 + 15𝑎𝑘+1 + 24𝑎𝑘+2 − 16𝑎𝑘+3 + 2𝑏𝑘 − 18𝑏𝑘+1 − 16𝑏𝑘+2 + 32𝑏𝑘+3 > 0     (3.5) 

 

Lemma 3.6 

If  𝑥 ∈ (0,1), then  

𝑥2(𝑥2 + 4)2 + 2(𝑥4 − 8𝑥2 − 16)(1 − 𝑥2)(𝑠𝑖𝑛−1 𝑥)2 

<
(2𝑥3 − 𝑥)(𝑥2 + 4)2(𝑠𝑖𝑛−1 𝑥)

√1 − 𝑥2
                                                                                            (3.6) 

 

4. Proof of some Lemmas & Theorems: 

Proof of Lemma 3.3: 

Denote the R.H.S. of (3.3) by 𝑚(𝑘). We have to prove 0 > −𝑚(𝑘) = 𝑀(𝑘) (say). Utilising Lemma 3.2 in 

𝑀(𝑘), we get 

𝑀(𝑘) 

= 2𝑎𝑘 − 17𝑎𝑘+1 + 40𝑎𝑘+2 − 16𝑎𝑘+3 + 2𝑏𝑘 + 14𝑏𝑘+1 − 48𝑏𝑘+2 + 32𝑏𝑘+3 

=
22𝑘 × 𝑟(𝑘)

(2𝑘 + 1)! (8𝑘7 + 140𝑘6 + 1022𝑘5 + 4025𝑘4 + 9212𝑘3 + 12215𝑘2 + 8658𝑘 + 2520)
 

 

where  

 

𝑟(𝑘) 

= −36𝑘7 − 600𝑘6 − 4011𝑘5 − 14312𝑘4 − 30182𝑘3 − 38227𝑘2 − 26980𝑘 − 8160 

 

Observe that, 𝑟(𝑘) is negative for all 𝑘 = 0, 1, 2, … …. 

Therefore, 𝑀(𝑘) < 0 and hence 𝑚(𝑘) > 0, ∀ 𝑘. This proves inequality (3.3). 
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Proof of Lemma 3.4: 

To prove inequality (3.4), first we rewrite it and denote new form by  

 

𝑃(𝑥) = 𝑥2(𝑥2 − 4)2 + 𝐴(𝑥) + 𝐵(𝑥) < 0.  

 

Now we prove that 𝑃(𝑥) is negative decreasing function, where  

 

𝐴(𝑥) =
(𝑥 − 2𝑥3)(𝑥2 − 4)2(𝑠𝑖𝑛−1 𝑥)

√1 − 𝑥2
 𝑎𝑛𝑑  

𝐵(𝑥) = 2(𝑥4 + 8𝑥2 − 16)(1 − 𝑥2)(𝑠𝑖𝑛−1 𝑥)2 

Now, by utilizing Lemma 3.2 in 𝐴(𝑥)𝑎𝑛𝑑  𝐵(𝑥), we simply get the following 

𝐴(𝑥) = −
17

15
𝑥6 −

88

3
𝑥4 + 16𝑥2 + ∑ 𝐴𝑘  𝑥2𝑘+8

∞

𝑘=0

 𝑎𝑛𝑑  

𝐵(𝑥) = −
83

45
𝑥6 +

56

3
𝑥4 − 16𝑥2 + ∑ 𝐵𝑘 𝑥2𝑘+8

∞

𝑘=0

 

Where 

𝐴𝑘 = −2𝑎𝑘 + 17𝑎𝑘+1 − 40𝑎𝑘+2 + 16𝑎𝑘+3  𝑎𝑛𝑑  

𝐵𝑘 = −𝑏𝑘 − 7𝑏𝑘+1 + 24𝑏𝑘+2 − 16𝑏𝑘+3. 

 

So, with the values of 𝐴(𝑥), 𝐵(𝑥), 𝐴𝑘 𝑎𝑛𝑑 𝐵𝑘 in 𝑃(𝑥), we obtain 

 

𝑃(𝑥) = −
172

45
𝑥6 + ∑  (𝐴𝑘 + 2𝐵𝑘)  𝑥2𝑘+8

∞

𝑘=0

 

 

It remains to show that 𝐴𝑘 + 2𝐵𝑘 < 0, ∀𝑘 = 0, 1, 2, … … , which is true by Lemma 3.3, because 𝐴𝑘 +

2𝐵𝑘 = 𝑀(𝑘). 

It means every coefficient is negative in the power series expansion of 𝑃(𝑥). By differentiating it w.r.t. 𝑥, 

we obtain 𝑃′(𝑥) < 0, ∀ 𝑥 ∈ (0,1). So, 𝑃(𝑥) is monotone decreasing which implies 𝑃(0) > 𝑃(𝑥), 𝑓𝑜𝑟 0 < 𝑥 

and it shows 𝑃(𝑥) is negative. 

Thus, 𝑃(𝑥) is negative decreasing on (0,1). This proves inequality (3.4). 

 

Proof of Theorem 2.1: 

Denote 

𝜙(𝑥) ≔
𝜙1(𝑥)

𝜙2(𝑥)
=

𝑙𝑛 (
𝑠𝑖𝑛−1 𝑥

𝑥
) + 𝑙𝑛 (

4 − 𝑥2

4
)

𝑥2
 , 

where 𝜙1(𝑥) = 𝑙𝑛 (
𝑠𝑖𝑛−1 𝑥

𝑥
) + 𝑙𝑛 (

4−𝑥2

4
)   𝑎𝑛𝑑  𝜙2(𝑥) = 𝑥2 with 𝜙1(0 +) = 0 = 𝜙2(0). 

 

Differentiating w.r.t. 𝑥, we obtain 
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𝜙1
′ (𝑥)

𝜙2
′ (𝑥)

=
1

2
(

1

𝑥(𝑠𝑖𝑛−1 𝑥)√1 − 𝑥2
−

4 + 𝑥2

𝑥2(4 − 𝑥2)
) =

1

2
𝜙3(𝑥),  

where  

 

𝜙3(𝑥) =
1

𝑥(𝑠𝑖𝑛−1 𝑥)√1 − 𝑥2
−

4 + 𝑥2

𝑥2(4 − 𝑥2)
 , 

Now, we show that 𝜙3(𝑥) is increasing on (0,1) 𝑖. 𝑒. 𝜙3
′ (𝑥) > 0, ∀𝑥 ∈ (0,1).  Now, differentiating w.r.t. 𝑥, 

we get  

𝜙3
′ (𝑥) =

1

𝑥2
𝜙4(𝑥) , 

where 

 

𝜙4(𝑥) = −
1

(𝑠𝑖𝑛−1 𝑥)2(1 − 𝑥2)
(𝑥 +

(1 − 2𝑥2)(𝑠𝑖𝑛−1 𝑥)

√1 − 𝑥2
) −

2(𝑥4 + 8𝑥2 − 16)

𝑥(𝑥2 − 4)2
 

 

Now, 𝜙3
′ (𝑥) > 0 ⇔  𝜙4(𝑥) > 0, because  

1

𝑥2 > 0, ∀𝑥 ∈ (0,1). 

By Lemma 3.4, 𝜙4(𝑥) > 0 and hence 𝜙3
′ (𝑥) > 0, ∀𝑥 ∈ (0,1). So, 𝜙3(𝑥) and its scalar multiples are 

increasing on (0,1). 

Therefore,   𝜙1
′ (𝑥)/𝜙2

′ (𝑥) is increasing on (0,1). So, by Lemma 3.1, 𝜙(𝑥) is increasing on (0,1). This 

implies that 𝜙(0 +) < 𝜙(𝑥) < 𝜙(1−) and (0 +) = −1/12, 𝜙(1 −) = 𝑙𝑛 (3𝜋/8), which proves the 

theorem. 

 

Proof of Lemma 3.5: 

Denote the R.H.S. of (3.3) by 𝑛(𝑘). We have to prove 0 > −𝑛(𝑘) = 𝑁(𝑘) (say). Utilising Lemma 3.2 in 

𝑁(𝑘), we get 

𝑁(𝑘) 

= 2𝑎𝑘 + 15𝑎𝑘+1 + 24𝑎𝑘+2 − 16𝑎𝑘+3 + 2𝑏𝑘 − 18𝑏𝑘+1 − 16𝑏𝑘+2 + 32𝑏𝑘+3 

=
22𝑘 × 𝑠(𝑘)

(2𝑘 + 1)! (8𝑘7 + 140𝑘6 + 1022𝑘5 + 4025𝑘4 + 9212𝑘3 + 12215𝑘2 + 8658𝑘 + 2520)
 

 

where  

 

𝑠(𝑘) 

= −100𝑘7 − 1720𝑘6 − 11947𝑘5 − 43592𝑘4 − 90502𝑘3 − 107411𝑘2 − 68100𝑘 − 18016 

 

Observe that, s(𝑘) is negative for all 𝑘 = 0, 1, 2, … …. 

Therefore, 𝑁(𝑘) < 0 and hence 𝑛(𝑘) > 0, ∀ 𝑘. This proves the inequality (3.5). 

 

Proof of Lemma 3.6: 

To prove inequality (3.6), first we rewrite it and denote new form by  

 

𝑄(𝑥) = 𝑥2(𝑥2 + 4)2 + 𝐴(𝑥) + 𝐵(𝑥) < 0.  
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Now we prove that 𝑄(𝑥) is negative decreasing function, where  

 

𝐶(𝑥) =
(𝑥 − 2𝑥3)(𝑥2 + 4)2(𝑠𝑖𝑛−1 𝑥)

√1 − 𝑥2
 𝑎𝑛𝑑  

𝐷(𝑥) = 2(𝑥4 − 8𝑥2 − 16)(1 − 𝑥2)(𝑠𝑖𝑛−1 𝑥)2 

Now, by utilizing Lemma 3.2 in 𝐶(𝑥)𝑎𝑛𝑑 𝐷(𝑥), we simply get the following 

𝐶(𝑥) = −
337

15
𝑥6 −

40

3
𝑥4 + 16𝑥2 + ∑ 𝐶𝑘 𝑥2𝑘+8

∞

𝑘=0

 𝑎𝑛𝑑  

𝐷(𝑥) =
397

45
𝑥6 +

8

3
𝑥4 − 16𝑥2 + ∑ 𝐷𝑘 𝑥2𝑘+8

∞

𝑘=0

 

Where 

𝐶𝑘 = −2𝑎𝑘 − 15𝑎𝑘+1 − 24𝑎𝑘+2 + 16𝑎𝑘+3  𝑎𝑛𝑑  

𝐷𝑘 = −𝑏𝑘 + 9𝑏𝑘+1 + 8𝑏𝑘+2 − 16𝑏𝑘+3. 

 

So, with the values of 𝐶(𝑥), 𝐷(𝑥), 𝐶𝑘 𝑎𝑛𝑑 𝐷𝑘 in 𝑄(𝑥), we obtain 

 

𝑄(𝑥) = −
172

45
𝑥6 + ∑  (𝐶𝑘 + 2𝐷𝑘)  𝑥2𝑘+8

∞

𝑘=0

 

 

It remains to show that  𝐶𝑘 + 2𝐷𝑘 < 0, ∀𝑘 = 0, 1, 2, … … , which is true by Lemma 3.5, because  𝐶𝑘 +

2𝐷𝑘 = 𝑁(𝑘). 

 

It means every coefficient is negative in the power series expansion of 𝑄(𝑥). By differentiating it w.r.t. 𝑥, 

we obtain 𝑄′(𝑥) < 0, ∀ 𝑥 ∈ (0,1). So, 𝑄(𝑥) is monotone decreasing  which implies 𝑄(0) > 𝑄(𝑥), 𝑓𝑜𝑟 0 <

𝑥 and it shows Q(𝑥) is negative. 

Thus, Q(𝑥) is negative decreasing on (0,1). This proves inequality (3.6). 

 

Proof of Theorem 2.2: 

Denote 

𝜓(𝑥) ≔
𝜓1(𝑥)

𝜓2(𝑥)
=

𝑙𝑛 (
𝑠𝑖𝑛−1 𝑥

𝑥
) + 𝑙𝑛 (

4 + 𝑥2

4
)

𝑥2
 , 

where 𝜓1(𝑥) = 𝑙𝑛 (
𝑠𝑖𝑛−1 𝑥

𝑥
) + 𝑙𝑛 (

4+𝑥2

4
)   𝑎𝑛𝑑  𝜓2(𝑥) = 𝑥2 with 𝜓1(0 +) = 0 = 𝜓2(0). 

 

Differentiating w.r.t. 𝑥, we obtain 

 

𝜓1
′ (𝑥)

𝜓2
′ (𝑥)

=
1

2
(

1

𝑥(𝑠𝑖𝑛−1 𝑥)√1 − 𝑥2
+

𝑥2 − 4

𝑥2(4 + 𝑥2)
) =

1

2
𝜓3(𝑥),  

where  
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𝜓3(𝑥) =
1

𝑥(𝑠𝑖𝑛−1 𝑥)√1 − 𝑥2
+

𝑥2 − 4

𝑥2(4 + 𝑥2)
 , 

 

Now, we show that 𝜓3(𝑥) is increasing on (0,1) 𝑖. 𝑒. 𝜓3
′ (𝑥) > 0, ∀𝑥 ∈ (0,1).   

Differentiating w.r.t. 𝑥, we obtain 

𝜓3
′ (𝑥) =

1

𝑥2
𝜓4(𝑥) , 

where 

 

𝜓4(𝑥) = −
1

(𝑠𝑖𝑛−1 𝑥)2(1 − 𝑥2)
(𝑥 +

(1 − 2𝑥2)(𝑠𝑖𝑛−1 𝑥)

√1 − 𝑥2
) +

2(𝑥4 − 8𝑥2 − 16)

𝑥(𝑥2 + 4)2
 

 

Now, 𝜓3
′ (𝑥) > 0 ⇔  𝜓4(𝑥) > 0, because  

1

𝑥2 > 0, ∀𝑥 ∈ (0,1). 

By Lemma 3.6, 𝜓4(𝑥) > 0 and hence 𝜓3
′ (𝑥) > 0, ∀𝑥 ∈ (0,1). So, 𝜓3(𝑥) and its scalar multiples are 

increasing on (0,1). 

Therefore,   𝜓1
′ (𝑥)/𝜓2

′ (𝑥) is increasing on (0,1). So, by Lemma 3.1, 𝜓(𝑥) is increasing on (0,1). This 

implies that 𝜓(0 +) < 𝜓(𝑥) < 𝜓(1−) and (0 +) = 5/12, 𝜓(1 −) = 𝑙𝑛 (5𝜋/8), which proves the theorem.  

 

Conclusion: 

As we have noticed that the lower bound(LB) in (1.4) is sharper than that of (1.5) and (1.3). the LB for 

function 𝑓(𝑥) = 𝑠𝑖𝑛−1 𝑥 /𝑥 in (2.2) is the refinement of LB in (1.4). Also, the LB of (2.1) is tighter than 

the LB in (2.2) for 𝑓(𝑥). The upper bound(UB) of it in (1.4) is very tight than that of the UBs in 

(1.3), (1.5), (2.1) and (2.2). Despite this fact, the UB in (2.1) is the refinement of UBs of f(x) in 

(1.3), (1.5) and (2.2). Moreover, the UB of it in (2.2) is tighter than that in (1.3) and (1.5). We conclude 

this article by writing following inequality,  

 

1 + (
π − 2

2
) x2 > eln(

π
2

)x2

> (1 +
x2

4
)

−1

 eln(
5π
8

)x2

> (1 −
x2

4
)

−1

 eln(
3π
8

)x2

 

>
π

π − (π − 2)x2
>

sin−1 x

x
> (1 −

x2

4
)

−1

 e
−x2

12 > (1 +
x2

4
)

−1

 e
−5x2

12  

>
6

6 − x2
> e

x2

6 > 1 +
1

6
x2 
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