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ABSTRACT 

Over the years, several solutions to the problems of porous media flow have been developed. However, most 

of these solutions are very complex because they involve infinite summation of Bessel, Exponential and 

some other complex functions. As a result of their complexities, they often require lots of approximations 

(based on some assumptions) for most practical Engineering applications and this in turn reduces the 

accuracy of their real life applications. Therefore, this paper presents a novel method (combined Laplace and 

Differential transform) suitable for obtaining very simple and excellently accurate solutions to equations that 

governs fluid transport in porous media. The results obtained testify to the effectiveness, efficiency and 

conveniency of the proposed approach. 

 

INTRODUCTION 

Recent advancement in nonlinear sciences has led to the development of several analytical and numerical 

approaches for various engineering and scientific applications. Several types of numerical schemes and 

analytical tools for solving differential equation of various kinds have been proposed. 

One of these techniques is the Differential Transform. The Differential Transform is an iterative approach 

for obtaining the Taylor's series approximation of the solution of both linear and nonlinear differential 

equations. This approach was first proposed by J.K. Zhou in 1986. The Laplace-differential transform on the 

other hand is an approach suitable for obtaining an approximate form of the analytical solution of various 

kinds of ordinary and partial differential equation. 

In this research work, the combination of Laplace and Differential transform is employed for the purpose of 

obtaining an approximate form of the analytical solutions of the equations of porous media flow. The 

goodness of this method is its capability of combining two of the most reliable approaches for finding 

rapidly converging series solution of both ordinary and partial differential equations. 

As at the time of writing this paper, no attempt has been made to combine both Laplace and Differential 

transforms for the purpose of solving flow problems in porous media. This paper considers the effectiveness 

of the approach in obtaining solutions of the problems of 1-D and 2-D flow in porous media.  

 

DIFFERENTIAL TRANSFORM 

2.1 Differential Transform (DT) in One-Dimensional Space  

This section presents the definition and operations of Differential Transform in one-dimensional space. The 

differential transform of a univariate function 𝑤(𝑥), is given by equation (2.1) below. 

 

𝑊(𝑘) =  
1

𝑘!
[

𝜕𝑘

𝜕𝑥𝑘
 𝑤(𝑥)]

 
(𝑥 = 0)   _________(2.1) 

 

Where W(k) is the transformed form of w(x).  

The inverse transform of W (k) is defined as follows; 

𝑊(𝑥) = ∑ 𝑊(𝑘). 𝑥𝑘

∞

𝑘=0

  _________(2.2) 

 

 By combining equations (2.1) and (2.2) above, we obtain; 
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𝑊(𝑥) =  ∑
1

𝑘!
[

𝑑𝑘

𝑑𝑥𝑘
 𝑊(𝑥)]

∞

𝑘=0

 
(𝑥 = 0)𝑥𝑘  _______(2.3) 

 

From these definitions, it is very obvious that the differential transform approach originated from Taylor 

series expansion. Employing equations (2.1) and (2.2), the mathematical operations of differential transform 

are obtained and presented in the table below. 

 

Table 2.1; Mathematical Operations of Differential Transform in 1-D Space 

Functional form Transformed form 

𝑤(𝑥) = 𝑢(𝑥) ± 𝑣(𝑥) 𝑤(𝑘) = 𝑢(𝑘) ± 𝑣(𝑘) 

𝑤(𝑥) =∝ . 𝑢(𝑥) 𝑤(𝑘) =∝ . 𝑢(𝑘) 

𝑤(𝑥) =
𝑑𝑚𝑢(𝑥)

𝑑𝑥𝑚
 𝑤(𝑘) =

(𝑘 + 𝑚)!

𝑘!
𝑢(𝑘 + 𝑚) 

𝑤(𝑥) = 𝑢(𝑥). 𝑣(𝑥) 

𝑤(𝑘) = ∑ 𝑢(𝑟). 𝑣(𝑘 − 𝑟)

𝑘

𝑟=0

 

 

2.2 Differential Transform in Two-Dimensional Space  

In a similar manner, the differential transform of a bivariate function w(x, y) is defined as follows; 

 

𝑊(𝑘, ℎ) =  
1

𝑘! ℎ!
 [

𝜕𝑘+ℎ

𝜕𝑥𝑘𝜕𝑦ℎ
 𝑤(𝑥, 𝑦)]

       
(0,0)   _________(2.4) 

 

Also, the inverse transform of W (k, h) is given by equation (2.5) below. 

 

𝑊(𝑥, 𝑦) =  ∑ ∑ 𝑊(𝑘, ℎ)𝑥𝑘𝑦ℎ

∞

ℎ=0

 

∞

𝑘=0

 ____________________(2.5) 

 

Then combining equations (2.4) and (2.5) we obtain; 

 

𝑊(𝑥, 𝑦) =  ∑  ∑
1

𝑘! ℎ!
[

𝜕𝑘+ℎ

𝜕𝑥𝑘𝜕𝑦ℎ
𝑤(𝑥, 𝑦)]

∞

ℎ=0

∞

𝑘=0

      𝑥𝑘𝑦ℎ

(0,0)
________(2.6) 

 

Therefore, the mathematical operations of differential transform in two-dimensional space are presented in 

the table below. 
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Table 2.2; Mathematical Operations of Differential Transform in 2-D Space 
Functional form Transformed form 

𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) ± 𝑣(𝑥, 𝑦) 𝑤(𝑘, ℎ) = 𝑢(𝑘, ℎ) ± 𝑣(𝑘, ℎ) 

𝑤(𝑥, 𝑦) =∝ . 𝑢(𝑥, 𝑦) 𝑤(𝑘, ℎ) =∝ . 𝑢(𝑘, ℎ) 

𝑤(𝑥, 𝑦) =
𝜕𝑢(𝑥, 𝑦)

𝜕𝑥
 

𝑤(𝑘, ℎ) = (𝑘 + 1) . 𝑢(𝑘 + 1, ℎ) 

𝑤(𝑥, 𝑦) =
𝜕𝑢(𝑥, 𝑦)

𝜕𝑦
 

𝑤(𝑘, ℎ) = (ℎ + 1) . 𝑢(𝑘, ℎ + 1) 

𝑤(𝑥, 𝑦) =
𝜕𝑢𝑟+𝑠(𝑥, 𝑦)

𝜕𝑟𝑥𝜕𝑦𝑠
 𝑤(𝑥, 𝑦) =

(𝑘 + 𝑟)!

𝑘!

(ℎ + 𝑠)!

𝑠!
𝑢(𝑘 + 𝑟, ℎ + 𝑠) 

𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) . 𝑣(𝑥, 𝑦) 𝑤(𝑘, ℎ) = 𝑢(𝑘, ℎ) ⊗ 𝑣(𝑥, 𝑦)

= ∑  ∑ 𝑢(𝑟, ℎ − 𝑠). 𝑣(𝑘 − 𝑟, 𝑠) 

ℎ

𝑠=0

𝑟

𝑟=0

 

 

 2.3 Differential Transform in n-Dimensional Space 

In this section, a generalization of the results obtained in sections 2.1 & 2.2 above is presented. 

Let x = (x1, x2, . . . , xn) be a vector of n variable and k = (k1, k2, . . . , kn) be a vector of n nonnegative 

integers, then we define n-dimensional differential transform as follows; 

 

𝑊(𝑘1, 𝑘2 … , 𝑘𝑛) =
1

𝑘1! 𝑘2! … , 𝑘𝑛!
[

𝜕 
𝑘1+𝑘2+⋯+𝑘𝑛

𝜕𝑥1
𝑘1𝜕𝑥2

𝑘2 … 𝜕𝑥𝑛
𝑘𝑛

𝑊(𝑥1, 𝑥2, … , 𝑥𝑛)]
 

(0,0, … 0)______(2.7) 

 

Also, the inverse transform of W (k) is defined as 

 

𝑊(𝑥1, 𝑥2, … 𝑥𝑛) = ∑  ∑ … ∑ 𝑊(𝑘1, 𝑘2, … , 𝑘𝑛) ∏ 𝑥𝑖
𝑘𝑖_______(2.8)

𝑛

𝑖=1

∞

𝑘𝑛=0

∞

𝑘2=0

∞

𝑘1=0

 

 

Combining equations (2.7) and (2.8), the following result was obtained for the generalized n-dimensional 

differential transform; 

 

𝑊(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑  ∑ … ∑
1

𝑘1! 𝑘1! … 𝑘𝑛!

∞

𝑘𝑛=0

∞

𝑘2=0

∞

𝑘1=0

[
𝜕𝑘1+𝑘2+…𝑘𝑛

𝜕𝑥1
𝑘1𝜕𝑥2

𝑘2 … 𝜕𝑥𝑛
𝑘𝑛

𝑤(𝑥1, 𝑥2, … 𝑥𝑛] ∏ 𝑥𝑖
𝑘𝑖______(2.9)

𝑛

𝑖=1

 

 

 

COMBINED LAPLACE AND DIFFERENTIAL TRANSFORM 

In this section, the idea behind the combination of Laplace and Differential Transform methods is clearly 

presented. The idea is illustrated using a non-homogenous partial differential equation (PDE).  

Consider the following non-homogenous partial differential equation; 

  

£[𝑢(𝑥, 𝑡)] + Ʀ[𝑢(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡)     𝑥𝜖𝑅, 𝑡𝜖𝑅+____________(3.1) 

 

Subject to the following initial conditions; 

 

𝑢(𝑥, 0) = 𝑔, (𝑥), 𝑢𝑡(𝑘, 0) = 𝑔𝑡(𝑥)__________________(3.2) 
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As well as the Dirichlet and Neumann boundary conditions below 

 

𝑢(0, 𝑡) = ℎ, (𝑡), 𝑢(1, 𝑡) = ℎ2(𝑡)______________(3.3) 

 

𝑢(0, 𝑡) = ℎ, (𝑡),   𝑢𝑥(1, 𝑡) = ℎ3(𝑡)______________(3.4) 

 

We start by taking the Laplace transform of both sides of equation (3.1) and we obtain; 

 

𝐿[£[𝑢(𝑥, 𝑡)]] + 𝐿[Ʀ[𝑢(𝑥, 𝑡)]] = 𝐿[𝑓(𝑥, 𝑡)]___________(3.5) 

 

By substituting the initial conditions(IC) from equation (3.2), we obtain 

 
−
𝑢(𝑥, 𝑠) + 𝐿[Ʀ[𝑢(𝑥, 𝑡)]] =

−
𝑓 (𝑥, 𝑠)_____________(3.6) 

 

Secondly, we take the differential transform of equation (3.6) and we obtain; 

 
−
𝑢𝑘

(𝑠) + 𝐿[Ʀ[𝑢𝑘(𝑡)]] =
−
𝐹𝑘

(𝑠)______________(3.7) 

 

The next step is to take the inverse Laplace transform of equation (3.7) and by so doing we obtain; 

 

𝐿 [
−
𝑢𝑘

(𝑠)] + 𝐿−1𝐿[Ʀ[𝑢𝑘(𝑡)]] = 𝐿−1[
−
𝐹𝑘

(𝑠)] 

 

𝑢𝑘(𝑡) +  Ʀ[𝑢𝑘(𝑡)] =  𝐹𝑘(𝑡)________________(3.8) 

 

Moreover, by applying the differential transform to the Dirichlet and Neumann boundary conditions (BC), 

we obtain; 

 

𝑢0(𝑡) =  ℎ1(𝑡)_________________(3.9𝑎) 

 

By assuming that 

 

𝑢1(𝑡) =  𝑎𝑞(𝑡)_________________(3.9𝑏) 

 

Also, from the definition of Differential Transform, we have that 

 

𝑢(1, 𝑡) = ∑ 𝑢𝑖(𝑡), 𝑢𝑥(1, 𝑡) =  ∑ 𝑖 𝑢𝑖(𝑡)___________(3.9𝑐) 

∞

𝑖=0

∞

𝑖=0

 

 

The value of ‘a’ is calculated using equation (3.9𝑐). Furthermore, by substituting equations (3.9𝑏) and 

(3.9𝑎) into (3.8), we obtain the following result for the power series solution of equation (3.1); 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑘
 (𝑡)𝑥𝑘______________(3.9𝑑)

∞

𝑘=0

 

 

APPLICATION TO POROUS MEDIA FLOW 

In this section, the illustration of the applications of the combination of Laplace and Differential transform 

methods in obtaining solutions of the Equations (PDE) that govern 1-D and 2-D porous media flow is 

presented. 
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4.1 Solution of 1-Dimensional Flow Problem 

This section gives an illustration of the application of the proposed approach in obtaining solution of the 

equation that governs 1-D porous media flow. By defining appropriate dimensionless time and 

dimensionless spatial variable, the PDE that governs 1-D porous media flow is presented in a non-

dimensionalized form and the proposed approach is then used to obtain an approximate form of the 

analytical solution of the equation. The purpose for presenting the eqation in a non-dimensionalized form is 

to enhance more generalized applications of the solution to be obtained. 

In this work, the linear 1-D flow equation is non-dimensionalized by defining appropriate dimesnionless 

time and length as follows: 

𝑥𝐷 =
𝑥

𝐿
  𝑡𝐷 =

𝑡

𝑇
 

Where: 

𝑡𝐷   = Dimensionless time  

𝑥𝐷 = Dimensionless length  

L  = Characteristic length   

T = Characteristic time 

 

Having defined the above dimensionless variables, the following non-dimensionalized form of the equation 

was obtained; 

 

𝜕2𝑝

𝜕𝑥𝐷 
2 =

𝜕𝑝

𝜕𝑡𝐷
               0 < 𝑥𝐷 < 1    _______(4.1) 

 

Equation (4.1) above is the non-dimensionalized form of the equation that governs 1-D porous media 

flow.The non-dimensionalized form of the initial and boundary conditions associated with equation (4.1) are 

also presented below;  

  

𝑝(0, 𝑡𝐷) =  ᴪ(𝑡𝐷)___________(4.2𝑎) 

 

 𝑝(1, 𝑡𝐷) =   ∅(𝑡𝐷)__________(4.2𝑏) 

 

𝑝(𝑥𝐷 , 0) =   𝑝𝑖 ______________(4.2𝑐) 

 

Equation (4.2a) is the initial condition(IC) associated with equation (4.1) (expressed in a non-

dimensionalized form) and equations (4.2b) & (4.2c) are the non-dimensionalized form of the boundary 

conditons (Dirichlet’s condition) to which equation (4.1) is subjected. 

To solve equation (4.1) by the proposed approach, we first apply Laplace transform to equation (4.1) as 

follow;  

 

  
 𝜕2 

−
𝑝(𝑥𝐷,   𝑆)

𝜕𝑥𝐷
2   =   𝑠

−
𝑝(𝑥𝐷, 𝑠) − 𝑝(𝑥𝐷, 0)  _______(4.3) 

 

Substituting the initial condition(IC) (equation (4.2c)) into (4.3), we obtain; 

 

  
𝜕2 

−
𝑝 (𝑥𝐷,   𝑠)

𝜕𝑥𝐷
2  = 𝑠

−
𝑝(𝑥𝐷, 𝑠) − (𝑝𝑖)    _____________(4.4) 

 

Simplifying equation (4.4), we have; 

 

  
−
𝑝(𝑥𝐷, 𝑠)  =   

1

𝑠
(𝑝𝑖 +  

𝜕2
−
𝑝(𝑥𝐷, 𝑠)

𝜕𝑥𝐷
2  ) _______ (4.5) 
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The next step is to apply inverse Laplace transform to equation (4.5) above. By doing so, the following 

equation is obtained; 

  𝑝(𝑥𝐷, 𝑠) =  𝑝𝑖 +  𝐿−1(
1

𝑆
 
𝜕2

−
𝑝(𝑥𝐷, 𝑆)

𝜕𝑥𝐷
2 ) ______(4.6) 

 

Furthermore, applying differential transform (DT) to the above equation, we obtain; 

 

  𝑝𝑘(𝑡𝐷) =  𝑝𝑖 +  𝐿−1 (
1

𝑠
 (𝑘 + 2)(𝑘 + 1) 

−
𝑝𝑘+2

(𝑠))_______(4.7)  

 

Equation (4.7) is the differential transform (DT) of the solution of equation (4.1). Therefore, the solution of 

equation (4.1) is obtained by applying the inverse differential transform to equation (4.7). 

Moreover, by applying differential transform (DT) to the boundary conditions (BC), the following results 

are obtained; 

  𝑝0 =  ᴪ(𝑡𝐷)________ (4.8a) 

 

  𝑝1 =  ∅(𝑡𝐷)___________(4.8𝑏) 

 

Equations (4.8a) and (4.8b) above are the first two (2) terms of the differential transform (DT) inversion 

series for equation (4.7) (given by equation (3.9d)). Other terms of the inversion series are obtained 

recursively by substituting 4.8a and 4.8b into equation (4.7) as follows;  

  ᴪ(𝑡𝐷) =  𝑝𝑖 + 𝐿−1(
2

5
 
−
𝑝2

(𝑠))_______(4.9) 

 

𝐿(ᴪ(𝑡𝐷) −  𝑝𝑖) =  
2

5
 
−
𝑝2

 (𝑠) 

 
−
𝑝2

 (𝑠) =  
1

2
 (𝑠ᴪ(𝑠) −  𝑝𝑖)___________(4.10) 

 

 𝑝2(𝑡𝐷) =  𝐿−1  (
𝑠 ᴪ (𝑠)

2
) − 𝐿−1(

𝑝𝑖

2
)_____(4.11) 

 

𝑝2(𝑡𝐷) =  
𝐹(𝑡𝐷) −  𝑝𝑖𝛿(𝑡𝐷)

2
 ______________(4.12) 

 

 Where 𝐹(𝑡𝐷) =  𝐿−1(𝑠ᴪ(𝑠)) 

 

∅(𝑡𝐷) =  𝑝𝑖 +  𝐿−1(
6

𝑠
 
−
𝑝3

(𝑠))_____________(4.13) 

 

∅(𝑡𝐷) =  𝑝𝑖 +  𝐿−1(
6

𝑠
 𝑝3(𝑠)) 

 
−
𝑝(𝑠) =  

𝑠

6
 (∅(𝑠) −  

𝑝𝑖

𝑠
)____________(4.14) 

 

𝑝3(𝑡𝐷) =  𝐿−1 (
𝑆∅(𝑠) − 𝑝𝑖

6
) =  

𝐺(𝑡𝐷) − 𝑝𝑖 𝛿(𝑡𝐷)

6
 

 

𝑝3(𝑡𝐷) =  
𝐺(𝑡𝐷) −  𝑝𝑖 𝛿(𝑡𝐷)

6
 ____________(4.15) 
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   Where 𝐺(𝑡𝐷) =  𝐿−1(𝑠 ∅(𝑠)) 

 

By substituting all the results obtained so far into equation (3.9d), we obtain; 

 

𝑃(𝑥𝐷, 𝑡𝐷) =  ᴪ(𝑡𝐷) +  ∅(𝑡𝐷)𝑥𝐷 +
(𝐹(𝑡𝐷) − 𝑝𝑖 𝛿(𝑡𝐷))

2!
 𝑥𝐷 

2 +
(𝐺(𝑡𝐷) −  𝑝𝑖 𝛿(𝑡0))

3!
 𝑥𝐷

3    ___(4.16) 

 

  

The equation (4.16) above is the solution of the 1-D flow problem to third order approximation. It is 

important to know that the truncation of the series after the third order does not cast any doubt on the 

accuracy and reliability of the obtained solution because the effect of the growth in the power of  𝑥𝐷 (since 

𝑥𝐷 < 1 𝑎𝑛𝑑 𝑒𝑣𝑒𝑟𝑦 𝑡𝑒𝑟𝑚 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑥𝐷 𝑎𝑠 𝑖𝑡′𝑠 𝑑𝑖𝑣𝑖𝑠𝑜𝑟) makes the higher terms 

of the inversion series to become negligible. Furthermore, a closed solution is obtainable in most cases (for 

any particular boundary condition) because the inversion series is a rapidly converging one.  

 

4.2 Solution of Two-Dimensional Flow Problem 

Similar to the previous section, this section presents the application of the proposed approach in obtaining an 

approximate form of the analytical solution of the PDE that governs 2-D porous media flow. In a similar 

vein, by defining appropriate dimensionless time and dimensionless spatial variables, the PDE that governs 

2-D porous media flow is also presented in a non-dimensionalized form and the proposed approach is then 

used to obtain an approximate form of the analytical solution of the equation.  

In this section, the linear 2-D flow equation is written in a non-dimensionalized form by defining 

appropriate dimensionless time and length as follows: 

𝑥𝐷 =
𝑥

𝐿𝑥
  𝑡𝐷 =

𝑡

𝑇
 𝑦𝐷 =

𝑦

𝐿𝑦
 

Where: 

𝑡𝐷   = Dimensionless time  

𝑥𝐷 = Dimensionless length in x  

𝑦𝐷 = Dimensionless length in y 

𝐿𝑥  = Characteristic length in x 

𝐿𝑦       = Characteristic length in y 

T = Characteristic time 

 

Having defined the above dimensionless variables, the following non-dimensionalized form of the equation 

was obtained; 

 

𝜕2𝑝

𝜕𝑥𝐷
2 + 

𝜕2𝑝

𝜕𝑦𝐷
2 =  

𝜕𝑝

𝜕𝑡𝐷
       0 < 𝑥𝐷, 𝑦𝐷 < 1 ____________(4.17) 

 

In like manner, the non-dimensionalized form of the initial condition(IC) and the boundary conditions (BC) 

(Dirichlet’s and Newmann’s boundary conditions) are obtained as follows; 

 

 𝑃(𝑥𝐷, 𝑦𝐷 , 0) =  𝑝𝑖________________(4.18𝑎) 

 

 𝑃(0, 𝑦𝐷, 𝑡𝐷) =  ᴪ1(𝑦𝐷, 𝑡𝐷)________(4.18𝑏) 

 

𝑃(𝑥𝐷 , 0, 𝑡𝐷) =  ᴪ2(𝑥𝐷, 𝑡𝐷)________(4.18𝑐) 

 
𝜕𝑝

𝜕𝑥𝐷 
|𝑥𝐷 =0 =  ∅1(𝑦𝐷 , 𝑡𝐷)_________(4.18𝑑)  
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𝜕𝑝

𝜕𝑦𝐷 
|𝑦𝐷 =0 =  ∅2(𝑥𝐷 , 𝑡𝐷)_________(4.18𝑒) 

 

Furthermore, applying Laplace transform to equation (4.17), we have; 

 

𝜕2
−
𝑝(𝑥𝐷 , 𝑦𝐷 , 𝑠)

𝜕𝑥𝐷
2 +  

𝜕2
−
𝑝(𝑥𝐷 , 𝑦𝐷 , 𝑠)

𝜕𝑦𝐷
2 = 𝑠

−
𝑝(𝑥𝐷 , 𝑦𝐷 , 𝑠) −  𝑝(𝑥𝐷 , 𝑦𝐷,0)_______(4.19) 

 

Substituting the initial condition(IC) (equation (4.18a)) into equation (4.19), we have; 

 

𝜕2
−
𝑝

𝜕𝑥𝐷
2 +  

𝜕2
−
𝑝

𝜕𝑦𝐷
2 = 𝑠

−
𝑝 (𝑥𝐷, 𝑦𝐷 , 𝑠) − 𝑝𝑖_______(4.20) 

 

Simplification of the equation above gives; 

 

−
𝑝 =  

1

𝑠
(𝑝𝑖 +  

𝜕2
−
𝑝

𝜕𝑥𝐷
2 +

𝜕2
−
𝑝

𝜕𝑦𝐷
2 )______________(4.21)  

 

Equation (4.21) above is the transformed form of the solution of equation (4.17). By applying inverse 

Laplace transform to equation (4.21), the following result is obtained; 

 

𝑝(𝑥𝐷 , 𝑦𝐷 , 𝑡𝐷) = 𝐿−1(
1

𝑠
 (𝑝𝑖 + 

𝜕2
−
𝑝

𝜕𝑥𝐷
2 + 

𝜕2
−
𝑝

𝜕𝑦𝐷
2 ))______________(4.22) 

 

Further simplification of the equation above gives; 

 

𝑝(𝑥𝐷 , 𝑦𝐷 , 𝑡𝐷) =  𝑝𝑖 + 𝐿−1(
1

𝑠
 (

𝜕2
−
𝑝

𝜕𝑥𝐷
2 + 

𝜕2
−
𝑝

𝜕𝑦𝐷
2 ))______________(4.23) 

 

The next step is to apply differential transform to equation (4.23) above. By doing so, we have; 

 

𝑝ℎ,𝑘(𝑡𝐷) =  𝑝𝑖 +  𝐿−1(
1

𝑠
((ℎ + 2)(ℎ + 1)

−
𝑝ℎ+2,𝑘

(𝑠) + (𝑘 + 2)(𝑘 + 1)
−

𝑝ℎ,𝑘+2
(𝑠)))______(4.24) 

 

Equation (4.24) is the differential transform (DT) of the solution of equation (4.17). Therefore,  

The solution of equation (4.17) is obtained by applying inverse differential transform to equation (4.24). 

Also, by applying differential transform to the boundary conditions, we obtain the following results; 

 

𝑝0,𝑘(𝑡𝐷) =  𝑄1(𝑘, 𝑡𝐷)__________(4.25𝑎) 

𝑝ℎ,0(𝑡𝐷) =  𝑄2(ℎ, 𝑡𝐷)__________(4.25𝑏) 

𝑝1,𝑘(𝑡𝐷) =  𝑅1(𝑘, 𝑡𝐷)__________(4.25𝑐) 

𝑝ℎ,1(𝑡𝐷) =  𝑅2(ℎ, 𝑡𝐷)__________(4.25𝑑) 

 

 Substituting the boundary conditions (BC) (4.25a-4.25d) into equation (4.24) and simplifying further, we 

obtain the following results;  
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𝑝0,𝑘 =  𝑝𝑖 + 𝐿−1[
1

𝑠
 (2

−
𝑝2,𝑘

(𝑠) + (𝑘 + 2)(𝑘 + 1)
−

𝑝0,𝑘+2
(𝑠))] __________(4.26) 

 

𝐿[𝑄1(𝑘, 𝑡𝐷) − 𝑝1] =
1

𝑠
(2

−
𝑝2,𝑘

(𝑠) + (𝑘 + 2)(𝑘 + 1)
−

𝑝0,𝑘+2
(𝑠)) 

 

𝑠 (
−
𝑄1

(𝑘, 𝑠) −
𝑝𝑖

𝑠
) = 2

−
𝑝2,𝑘

(𝑠) + (𝑘 + 2)(𝑘 + 1)
−

𝑝0,𝑘+2
(𝑠) 

 

𝐻(𝑘,𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) = 2𝑝2,𝑘(𝑡𝐷) + (𝑘 + 2)(𝑘 + 2)𝑝0,𝑘+2(𝑡𝐷)___________(4.27) 

 

Where 𝐻(𝑘,𝑡𝐷) = 𝐿−1 (𝑠
−
𝑄1

(𝑘,𝑠)) 

 

𝑝2,𝑘(𝑡𝐷) =
1

2
[𝐻(𝑘, 𝑡𝐷) − 𝑝𝑖 𝛿(𝑡𝐷) − (𝑘 + 2)(𝑘 + 1)𝑄1(𝑘 + 2, 𝑡𝐷)] _________(4.28)  

 

𝑝ℎ,0(𝑡𝐷) = 𝑝𝑖 +  𝐿−1 [
1

𝑠
[(ℎ + 2)(ℎ + 1)

−
𝑝ℎ+2,𝑘

(𝑠) + 2
−

𝑝ℎ,2
(𝑠)]] __________(4.29) 

 

𝐿(𝑄2(ℎ, 𝑡𝐷) − 𝑝𝑖) =
1

𝑠
((ℎ + 2)(ℎ + 1)

−
𝑝ℎ+2,𝑘

(𝑠) + 2
−

𝑝ℎ,2
(𝑠)) 

 

𝑠(𝑄2(ℎ, 𝑠)) − 𝑝𝑖) = ((ℎ + 2)(ℎ + 1)
−

𝑝ℎ+2,0
(𝑠) + 2

−
𝑝ℎ,2

(𝑠)_____________(4.30) 

 

𝐿−1[𝑠𝑄2(ℎ, 𝑠) − 𝑝𝑖] = (ℎ + 2)(ℎ + 1)𝑝ℎ+2,0(𝑡𝐷) + 2𝑝ℎ,2(𝑡𝐷)___________(4.31) 

 

𝐺(ℎ, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) = (ℎ + 2)(ℎ + 1)𝑄2(ℎ + 2, 𝑡𝐷) + 2𝑝ℎ,2(𝑡𝐷) 

 

𝑝ℎ,2(𝑡𝐷) =
1

2
[𝐺(ℎ, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − (ℎ + 2)(ℎ + 1)𝑄2(ℎ + 2, 𝑡𝐷)]_________(4.32) 

 

𝑝0,1(𝑡𝐷) = 𝑄1(1, 𝑡𝐷)_______(4.33𝑎) 

𝑝0,0(𝑡𝐷) = 𝑄2(0, 𝑡𝐷)_______(4.33𝑏) 

𝑝1,0(𝑡𝐷) = 𝑄2(1, 𝑡𝐷)_______(4.33𝑐) 

  𝑝1,1(𝑡𝐷) = 𝑅2(1, 𝑡𝐷)______(4.33𝑑) 

 

Equations (4.33a), (4.33b), (4.33c) and (4.33d) above are the first four (4) terms of the differential 

transform(DT) inversion series of equation (4.24) (given by equation (3.9d)). Other terms of the differential 

transform (DT) inversion series are obtained recursively from equation (4.24) as follows;  

𝑝0,2(𝑡𝐷) =
1

2
[𝐺(0, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 2𝑄2(2, 𝑡𝐷)]___________________(4.34) 

 

𝑝1,2(𝑡𝐷) =
1

2
[𝐺(1, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 6𝑄2(3, 𝑡𝐷)]___________________(4.35) 

 

𝑝2,0(𝑡𝐷) =
1

2
[𝐻(0, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 2𝑄1(2, 𝑡𝐷)]___________________(4.36) 

 

𝑝2,1(𝑡𝐷) =
1

2
[𝐻(1, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 6𝑄1(3, 𝑡𝐷)] ___________________(4.37) 



NOVATEUR PUBLICATIONS  

         INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] 

ISSN: 2394-3696 Website: ijiert.org 

VOLUME 7, ISSUE 6, June-2020 

21 | P a g e  

 

Substituting equations (4.33a), (4.33b), (4.33c), (4.33d), (4.34), (4.35), (4.36) and (4.37) into equation 

(3.9d), we obtained the following equation; 

 

𝑝(𝑥𝐷 , 𝑦𝐷 , 𝑡𝐷) = 𝑄2(0, 𝑡𝐷) + [𝑄2(1, 𝑡𝐷) + 𝑅2(1, 𝑡𝐷)𝑦𝐷]𝑥𝐷 + 𝑄1(1, 𝑡𝐷)𝑦𝐷 +
1

2
[(𝐻(0, 𝑡𝐷) 

−𝑝𝑖𝛿(𝑡𝐷) − 2𝑄1(2, 𝑡𝐷) + (𝐻(1, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 6𝑄1(3, 𝑡𝐷)𝑦𝐷]𝑥𝐷
2

+
1

2
[(𝐺(0, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 2𝑄2(2, 𝑡𝐷))

+ (𝐺(1, 𝑡𝐷) − 𝑝𝑖𝛿(𝑡𝐷) − 6𝑄2(3, 𝑡𝐷))𝑥𝐷]𝑦𝐷
2    ______(39) 

 

The above equation is the approximate solution of the 2-D flow problem to third order approximation. As in 

the case of the 1-D solution, it is also important to know that the truncation of the series after the third order 

does not have much detrimental effect on the accuracy and reliability of the solution.  

 

CONCLUDING REMARKS 

In this study, the combination of Differential and Laplace Transformations was successfully expanded for 

obtaining the solutions of equations of porous media flow. The proposed algorithm is suitable for such 

problem and it gives rapidly converging series solutions. The combination of Laplace and differential 

transform methods is an effective and convenient method for handling this type of physical problem. The 

present method reduces the computational work as the solutions obtained are just simple polynomial 

functions and they have nothing to do with infinite series of Bessel function, Exponential function and some 

other complex functions (as opposed to some analytical approach) and subsequent results are fully 

supportive of the reliability and efficiency of the suggested scheme. 
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