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ABSTRACT 

In the article, pulsating fluid flows in tubes with changing walls, which are of great importance in biological 

mechanics, in particular, in the flow of blood in the arterial vessel, are investigated. The solution of the 

problem obtained formulas for the distribution of pressure gradient, velocity and flow rate. Impedance method 

analyzed the increase in hydraulic resistance depending on the frequency of oscillation. It was found that with 

large values 
2  of hydraulic resistance grow with growth 

2 .For crowding out the same flow rates, for small 

and with large values of the vibrational number or frequency, the energy input is different. Since for small 

values of the oscillatory number, fluctuations in the flow rate of the fluid fluctuate in the same phase with the 

oscillation of the pressure gradient, and for large values of this number, the oscillation of the phase of the fluid 

flow is shifted by 
090  degrees than fluctuations in the pressure gradient. In addition, for large values of the 

vibrational number, a tenfold size increases the maximum amplitude of the pressure gradient, relatively, then 

at low frequencies. This feature leads to an increase in the energy cost of pumping fluid due to wall oscillation. 
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INTRODUCTION 

During the contraction of the heart, a pressure wave propagates through the walls of the blood vessels, which 

is called the pulse wave. This wave gradually weakens with distance from the heart and practically dies out in 

the capillaries. The speed of propagation of a pulse wave depends on many factors, among which we can note, 

for example, the elastic-viscous properties of the vessel wall, blood pressure, its density, viscosity, wall 

permeability, active modified vessels. In the majority of works [1-6], the main attention is paid to the 

determination of the propagation of a pressure pulse wave taking into account the elasticity of the vessel wall, 

and its active change has never been taken into account. However, the active change in the wall significantly 

affects the propagation of the pressure pulse wave and its attenuation. In [1-6], problems for pulsating fluid 

flow in tubes with varying walls with a low frequency are solved. In works [11–14], the impedance method 

analyzed the decrease in hydraulic resistance in pipes with permeable walls. This article solves the problem 

in a generalized form, where the oscillatory parameter can be significant. 

 

RESEARCH METHODOLOGY 

Using those techniques, as in [7–9], after some transformations of the quantities, the Naiver – Stokes system 

of equations and the continuity equations are written in dimensionless form, which contain, with boundary 

conditions, two dimensionless quantities. Among these values, the relative amplitude (the ratio of the 



NOVATEUR PUBLICATIONS  

 INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY  

[IJIERT] ISSN: 2394-3696 Website: ijiert.org  

VOLUME 8, ISSUE 12, Dec. -2021 

81 | P a g e  

 

maximum deflection of wall m  to the width of pipe 
0

0

, mh
h


 ) was chosen as the main parameter; the 

remaining values are expressed in terms of the positive degrees of the main small parameter using ratios 

     
0 , 1n n   .       (1) 

Below, using this method, we solve the Naiver-Stokes equations and the continuity equations by the 

perturbation method. We search for unknown longitudinal and transverse velocities and pressures in the form 

of expansion in powers of the main small parameter  
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Substituting (1) in view of equality (2) into the system of Naiver-Stokes equations and the equations of 

continuity [1], and comparing the same degrees of a small parameter, we obtain a sequence of systems. The 

resulting system of equations differs from [7-10], so that, there is saved a member containing parameter 
2 . 

In addition to the zero approximation, the other equations depend on a small parameter. Therefore, we can 

express the following approximations, through the previous ones. To determine , ,i i iu p  in all 

approximations we write 
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    (3) 

Where  , ,i x y t  and  , ,i x y t  are determined using the previous approximations. All accepted 

designations here correspond to the notation [1]. The boundary conditions take the following form 

   

0, 0 0

, , , , , 1

i

i i i i

u
at r

r

u u x y t x y t at r 



 


  



  

    (4) 

Here    , , , , ,i iu x y t x y t   is located by decomposing unknown functions ,i iu   into a Taylor series in 

a neighborhood of 1r  . Since the perturbation parameter  is explicitly and implicitly included in the 

boundary conditions, it is impossible here to directly equate to zero terms with different powers of . 

Therefore, one can preliminarily decompose them into Taylor series in order to obtain their explicit 

dependence on . If we assume that functions ,i iu   are analytic with respect to 

1r  , then they can be expanded into Taylor series near 1r   
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  (5) 

For the zero, first, and second approximations (5) should be assumed. 
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 (6) 

Above it was said that the flow of fluid is carried out only due to periodic oscillations of the wall, therefore, 

0 0
p

x





 and, therefore, 0 00, 0u   , and the remaining quantities are determined after simple 

calculations from the system of equations (3) and boundary conditions (6). 
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ANALYS AND RESULTS 

Integrating the resulting formula (7) from 0  to 1 , the longitudinal velocity 1 2, ,u u we find the flow rate of 

the flowing fluid over sections x  

2
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Thus, here only 1Q  is an expense non-zero, the remaining expenses are equal to zero. Therefore, the total 

volumetric flow rate is determined from the formula. 
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The results obtained in this case also prove the assertion that the costs inserted by moving the pipe walls are 

equal to the sum of the longitudinal costs flowing through the sections , .x L x L    

Indeed, the displaced transverse costs are determined by integrating the transverse velocities on the walls from 

L  to L  along the longitudinal coordinates 
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and the amount of longitudinal costs will be equal to the amount of expenses in sections ,x L x L    in 

absolute values 
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from formulas (10) and (11) it is clear that 

.longitudinal transversQ Q        (12) 

Now we define the relationship of the pressure gradient to the fluid flow 
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The real part (13) determines the hydraulic resistance of the flow imaginary part of 

the attenuation of the wave. At lower values of 
2  hydraulic resistance is determined by the following 

formula. 

3

3
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          (14) 

 
Fig. 1. 

The dependence of the hydraulic resistance of the flow  Real z from the parameter  . 

 

CONCLUSION 

From Fig.1. it is seen that for large values of 
2  hydraulic resistance increase with an increase of 

2 . For 

crowding out the same flow rates, for small and with large values of the vibrational number or frequency, the 

energy input is different. Since for small values of the vibrational number, fluctuations in the flow rate of the 

fluid fluctuate in the same phase with the oscillation of the pressure gradient, and for large values of this 

number, the fluctuations of the flow rate of the fluid flow are shifted 
090  degrees than fluctuations in the 

pressure gradient [11-14]. In addition, for large values of the vibrational number, a tenfold size increases the 

maximum amplitude of the pressure gradient, relatively, then at low frequencies. This feature leads to an 

increase in the energy cost of pumping fluid due to wall oscillation. 

 

REFERENCES 

1) Navruzov K., Xakberdiyev J.B. Dynamics of non-newtonian fluids. Tashkent: Fan, 2000. 246 p. 

2) Peddle T. Hydrodynamics of large blood vessels.М. Mir. 1983. 400p. 

3) Fayzullaev. D.F., Navruzov K. Hydrodynamics of pulsating flows. Tashkent: Fan, 1986. 192 p. 

4) Navruzov K. Hydrodynamics of pulsating flows in pipelines. Tashkent: Fan, 1986. 112 p. 

5) Navruzov K.N. Biomechanics of large blood vessels. Tashkent, “Fan va texnologiya”, 2011, 144p. 

6) Navruzov K.N., Abdukarimov F.B, Xujatov N.J. To the theory of hydraulic resistance in the pulse flow of 

blood in vessels with moving walls. “Ilm sarchashmalari”, UrSU, 2014, №4, p. 16-19. 

7) Navruzov K.N., Abdukarimov F.B. Hydrodynamics of pulsating blood flow. Germany, «Lap-Lambert», 

2015, 209 p. 

8) Navruzov K.N. Impedance method for determining hydraulic resistance in arterial vessels (formulation of 

the problem). “Ilm sarchashmalari”, UrSU, 2016, №7 p.20-23 



NOVATEUR PUBLICATIONS  

 INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY  

[IJIERT] ISSN: 2394-3696 Website: ijiert.org  

VOLUME 8, ISSUE 12, Dec. -2021 

84 | P a g e  

 

9) Navruzov K., Rajabov S., Shukurov Z. Impedance method for determining hydraulic resistance in large 

arterial vessels with permeable walls. “Ilm sarchashmalari”, UrSU, 2017, №4, p. 20-23. 

10) Navruzov K., Rajabov S., Shukurov Z. About pulsatory flow in large arterial vessels, taking into account 

the permeability of the wall. “Ilm sarchashmalari”, UrSU, 2017, №11, p.31-37. 


