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ABSTRACT   

Detecting QRS-complexes from ECG waveform accurately, can now be treated as a classical problem. Many 

of the traditional QRS-detection algorithms somehow uses an empirically derived, universal thresholding 

constant to separate out QRS-complexes from Non-QRS region, after some processing for different patient 

records.  For instance the processing of an ECG signal may comprises of noise-filtering the raw signal, 

differentiating, squaring, running a moving window integral, normalizing and finally using a constant 

threshold for discrimination. The method of thresholding works best after normalization. Unfortunately, in 

cases, where a noise peak is of greater amplitude (than QRS-complexes) the normalization process scales-up 

the noise signal to unity and suppresses the QRS-complexes (may be, lower than the thresholding constant). 

This may even result in neglecting the actual QRS-complexes and counting the noise peak as the only QRS-

complex in the signal. To avoid this problem if the thresholding constant is set to a lower level some T-

waves may accidentally be detected as QRS-complexes. 

In this work we have tried to apply principles of Genetic Algorithm (GA) in conjunction with a novel 

method similar to wavelet transform to compute a Dynamic Thresholding Constant (DTC).  The method is 

named as Variable Wave Approximation (VWA). The performance of this algorithm is evaluated against the 

standard CSE ECG database. The results indicated that the algorithm achieved 99.xx% of the identification 

rate. The percentage of false positive and false negative is x.xx% and x.xx%, respectively.  

The proposed method (VMA) along with GA can be used for various other signal processing applications 

also. 
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INTRODUCTION 

Typical QRS-Detection Algorithm 

To detect QRS complexes from a noise-filtered ECG signal: 

STEP 1: Calculate the slope of individual ECG lead and square each slope 

STEP 2: Summation of above 12 signals is taken and normalized 

STEP 3: A moving window integral is taken 

STEP 4: Using a thresholding constant QRS and Non-QRS regions are separated. 

Traditionally, the processing of an ECG signal may comprise of noise-filtering the raw signal, 

differentiating, squaring, running a moving window integral and normalizing.  

At this point, the above signal can be drawn on a paper and a hyper-plane can be imagined, which separates 

QRS-complex from P-waves, T-waves and rest of the non-QRS region. 

Since the base-line-wander is already removed from the signal, this plane can be considered horizontal.  

Further, since the individual ECG-lead data is a 2-dimensional waveform the horizontal-hyper-plane can be 

treated as a straight line. 

y= mx +c   --------------------------  (Eq. 1) 



NOVATEUR PUBLICATIONS  

 INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY  

[IJIERT] ISSN: 2394-3696 Website: ijiert.org  

VOLUME 5, ISSUE 10, Oct. -2018 

34 | P a g e  

or simply  

    y = c (as it is parallel to x-axis) ----------  (Eq. 2) 

If the signal at after Moving Window Integral (MWI) has an amplitude ‘a’, then the hyper plane will be 

definitely below ‘a’, as it has to divide the signal into QRS and Non-QRS regions. 

    c = a/k   -------------------------- (Eq. 3) 

( Where a > k > 1, is a constant discussed latter)  

Even though the signal after MWI is normalized, ‘a’ is different for different patient records. Also there may 

be some noise peaks grater than ECG amplitude which greatly disturbs the normalization process (see Fig 1) 

and the thresholding misses the QRS –peaks. 

 

 
Figure: 1

 

To avoid this problem, if the thresholding constant is set to a lower level some small noise peaks associated 

with T-waves may accidentally be detected as QRS –complexes. 

 

SHORTCOMMINGS OF PREVIOUSLY USED ALGORITHMS  

If the signal at STEP 3 is plotted (with time on abscissa), the maximum y-value of the signal is always 1 (as 

it is normalized), but it has been observed that in many cases this is not the amplitude ‘a’ of the signal. 

Hence, we cannot assume a constant universal hyper plane, which will always divides the signal into QRS 

and Non-QRS regions, irrespective of noise.  In other words, a universal thresholding constant may not 

accurately work for varied ECG-records.  Finding correct thresholds empirically not always work accurately.  
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If a method can be found to correctly find the signal amplitude, we can find the height (‘c’) of the hyper 

plane (Eq. 3). 

The proposed method calculates the correct amplitude of the signal despite of considerable amount of noise. 

The amplitude so found cannot be directly used as a hyper plane ‘c’. As ‘c’ varies between 0 and ‘a’. Hence 

the constant ‘k’ in Eq. 3, is used to reduce ‘a’, by some factor. 

 

PROPOSED ALGORITHM  

Terminology: Variable Wave Approximation method: Using this method a family of similar waveforms can 

be generated and compared with the signal under consideration. In this way the characteristics of the 

unknown waveform can be determined. For example after MWI, the ECG signal turns into a shape similar to 

a square wave. Now, for the VWA method the “Variable Wave” is a square wave. GA will return the 

parameters of the “Approximately” similar waveform.  

 

To generate a square wave the following parameters are required: 

1) T_on The period of time when the wave remains high 

2) T_off The period of time when the wave remains low 

3) Amplitude The amplitude of the square wave.  

4) L-shift The amount of phase-shift required to synchronize it, with the signal under comparison (ECG 

after MWI) 

 

The GA will now use VWA to generate a whole range of square waves and find the difference of the  

original signal with each square wave. The GA will finally return the parameters required to generate a 

square wave which is optimally similar to the ECG-MWI signal. Out of the above four parameters returned 

by GA, we use only one parameter ie amplitude. This is the amplitude of MVI-ECG signal irrespective of 

any noise peaks. Other parameters such as T_on and T_off can be used to find the periodicity of the ECG 

signal for determination of degree of arrhythmia. Currently we are only considering amplitude. This 

amplitude varies for each patient-record. We divide this amplitude by a factor ‘k’ and use the resultant value 

as the thresholding value as per Eq. 3. 

 

Proposed Algorithm   (How GA uses VWA to determine the optimal match for MVI-ECG) 

STEP 1: For the 4-unknown individuals a random population is generated. The four individuals t_on, t_off, 

amplitude and l_shift act as genome(s). A random population of 20 genes is generated for each genome. 

 

STEP 2:   GA applies the genomes to the fitness function and calculates the score for each. The fitness 

function (minimization) is: 

 

d   =  f   (  t_on, t_off, amplitude, l_shift )  

     = ∑   |  vsw  -  ecgmvi    | 

 

Where: 

vsw: is a vector containing samples of the “Variable Square Wave” generated,  using a set of genomes 

from the current population. 

emvi: is a vector containing samples of the “ECG Moving Window Integral” 

d      :  is the sum of, absolute values of, individual samples of the two vectors. 
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STEP 3:  New generation is evolved using: 

Elite Children: the individuals which produced 

 minimum ‘d’ are guaranteed to survive to the next generation. 

Crossover children: are created by combining the vectors of a pair of parents.  

Mutation children:   are created by introducing random changes, or mutations, to a single parent.  

 

STEP 4: Termination Condition 

The above  two steps  are repeated until any one condition fails: 

a) Number of maximum generations defined exceeds, 

b) Number of ‘stall generations’ exceeds or 

c) Maximum time allowed to execute the algorithm exceeds. 

 

STEP 5: At this point the GA has obtained the parameters required to generate a square wave, 

which best ‘approximates’ the  ECG_MVI. The amplitude so obtained is now divided by a constant ‘k’ to 

obtain the Dynamic Thresholding Constant (DTC). 

 

STEP 6: Using the above computed DTC, the QRS and Non-QRS regions are separated. 

A hyper plane or a thresholding line ( y=c ) is used to classify QRS and  

Non-QRS regions.  

 

The performance of the algorithm is evaluated against the standard CSE ECG database. The results indicated 

that the algorithm achieved 99.xx% of the identification rate. The percentage of false positive and false 

negative is x.xx% and x.xx%, respectively.   

 

Genetic Algorithm parameter list 

1. Population Type:  It is taken as 'doubleVector', individuals in the population have type 'double'. The 

other option provided in Matlab is Bit string ('bitstring'). This option is suitable if the individuals in the 

population are bit strings mainly seen in problems which involves sequence matching.  In our case the 

desired output of GA are decimal numbers so the Population Type is taken as 'doubleVector', 

 

2. Population Size: Specifies how many individuals are there, in each generation. With a large population 

size, the genetic algorithm searches the solution space more thoroughly but increases the execution time. 

So it has to be chosen carefully, in our case we have set it to 20. In our case the final output(s) of the GA 

are all decimal numbers between 0 and 1. Taking 20 numbers in between 0 and 1 as the initial 

population was found sufficient.  

 

3. Elite Count: Specifies the number of individuals that are guaranteed to survive to the next generation. 

The Elite count can be any integer number less than or equal to the population size. We have taken 

population size as 20 and elite count as 2. Taking too many elite children may not help in getting a 

varied population in the next generation. 

 

4. Crossover Fraction: Is a field, in the GA's reproduction options. It specifies the fraction of each 

population, other than elite children, that are made up of crossover children. A crossover fraction of 1 

means that all children other than elite individuals are crossover children, while a crossover fraction of 0 
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means that all children are mutation children. It has been observed that neither of these extremes is an 

effective strategy for optimizing a function. In our case it is chosen as 0.8. Since the population size, we 

have taken is 20 and elite children are 2, the remaining 18 are divided using Crossover Fraction. Hence 

15 children are determined using crossover and 3 are determined using mutation.  

 

5. Generations: At each iteration, the genetic algorithm performs a series of computations on the current 

population to produce a new population. Each successive population is called a new generation. It is a 

positive integer specifying the maximum number of iterations before the algorithm halts. If this number 

less, the output of the GA may not be desirable. In our case it was experimentally determined and 

assigned a value of 1200. This is used as one of the stopping criteria of the algorithm. 

 

6. Time Limit: This also acts as one of the stopping criterion of the algorithm. It is a positive number, the 

algorithm stops after running for TimeLimit seconds. We have experimentally derived the value as 30. 

Since Generations also act as stopping criterion, GA algorithm terminates on 'which ever is first' basis. 

For example if number of generations is 896 only and it has already taken 30 second, then the algorithm 

will terminate. The experiments were conducted on an IBM® PC with Intel® Core™ Duo processor for 

which this time was sufficient for more than 1500 iterations.  

 

7. StallGenLimit: The algorithm stops if there is no improvement in the best fitness value for the number 

of generations specified by Stall Generations Limit. We have chosen that the algorithm must run for at 

least 1200 generations or 30 seconds, which ever is first, irrespective of number of stall Generations, so 

this limit is taken as Infinity. 

 

8. Initial Population: We have not defined a per-computed initial-population, instead the function is called 

to randomly calculate it. Initial population can be pre-defined using the saved-results of the previous run 

of the GA. Since the hyper plane for every record will be different, we have not used the previous 

population. It was observed during the experiments that allowing GA to use random values instead of 

using the previous values gave better results.  To create the initial population the 'CreationFunction' 

(discussed below) was used. 

 

9. CreationFcn: Matlab's inbuild function 'gacreationuniform' was used, it creates a random initial 

population with a uniform distribution. 

 

10. FitnessScalingFcn: Fitness scaling converts the raw fitness scores that are returned by the fitness 

function, to values in a range, that is suitable for the selection function. The fitness scaling function 

based on 'Rank' (fitscalingrank) was used. It scales the raw scores based on the rank of each individual. 

The rank of an individual is its position in the sorted scores. The rank of the most fit individual is 1, the 

next most fit is 2, and so on. Rank fitness scaling removes the effect of the spread of the raw scores. 

 

11. SelectionFcn: Selection options specify how the genetic algorithm chooses parents for the next 

generation. The Selection function used is Stochastic uniform ('selectionstochunif').  

  

12. CrossoverFcn: Crossover options specify how the genetic algorithm combines two individuals, or 

parents, to form a crossover child for the next generation. we have used crossover function named 
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Scattered 'crossoverscattered'. It creates a random binary vector and selects the genes where the vector 

is a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and combines 

the genes to form the child. 

 

13. MutationFcn:  Mutation options specify how the genetic algorithm makes small random changes in the 

individuals in the population to create mutation children. Mutation provides genetic diversity and 

enables the genetic algorithm to search a broader space. We have used Matlab's default mutation 

function, Gaussian (mutationgaussian), which adds a random number taken from a Gaussian 

distribution with mean 0 to each entry of the parent vector. The variance of this distribution is 

determined by the parameters Scale and Shrink and by the Initial range setting in the Population options. 
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