LEVELWISE BRACED MULTISTOREYED BUILDING FRAMES SUBJECTED TO GRAVITY AND EARTHQUAKE LOADS

Trupti D.Maslekar¹,

¹Department of civil engineering, A.G.Patil Institute of Technology, Solapur University, Solapur, India truptimaslekar@gmail.com

ABSTRACT

The structure in high seismic areas may be susceptible to the severe damage. Structure has to resist gravity load as well as lateral load which can develop high stresses. Now-a-days, shear wall in R.C.structure and steel bracings in steel structure are most popular system to resist lateral load due to earthquake, wind, blast etc. Wall bracing is a construction technique used to improve the structural performance of a building. Bracing systems include wood or steel or RCC components that help evenly distribute loads and increase the safety of the structure. While traditional framing can support the weight of the roof and floors above, it is not able to resist lateral stresses caused by wind, earthquakes or other forces.

Bracing is efficient because the diagonals work in axial stress and therefore call for minimum

member sizes in providing stiffness and strength against horizontal shear. Through the addition of the bracing system, load could be transferred out of the frame and into the braces, by passing the weak columns while increasing strength. In this study R.C.C. building is modeled and analyzed for 3-bay and G+11 structure in three Parts viz.,

(i) Model without RC bracing (bare frame), (ii) Model completely RC braced (fully braced frame), (iii) Model with partially RC level wise braced frames. The computer aided analysis is done by using STAAD-PRO to find out the effective lateral load system during earthquake in high seismic areas. Total 298 possible combinations of level wise bracings are carried out.

Keywords-Bracing, lateral load, strength, stability, Bare frame, fully braced fram etc..

(a) Bare frame

(b) Fully zip braced frame c) specific member considered for analysis

Figure 2. Configurations used for analysis	
Table 1: Models used for this analysis	

Sr. No.	Model	Frame Types Storey Variation		Bay Variation	Beam depth(mm)
1	Ι	Bare Frame	G+11	4 and 5	350 to 600
2	II	Fully Braced Frame	G+11	4 and 5	350 to 600
3	III	Bay wise Braced Frame	G+11	4 and 5	350

ISSN: 2394-3696

2.4 Load combinations									
In the limit state design of reinforced concrete									
structures, following load combinations shall be									
accounted as per I.S. 1893 (Part I) - 2002 ^[1] , where									

the terms D.L., I.L., and E.L. stand for the response quantities due to dead load, imposed load and designated earthquake load respectively.

$(Falt I) = 2002^{[1]}$, where	
Combinations for limit state	Combinations for limit state of
of collapse	serviceability
1) 1.5 (DL + LL) 2) 1.2 (DL + LL ± EQ) 3) 1.5 (DL ± EQ) 4) 0.9 DL ± 1.5 EQ	1) (DL + 0.8 LL + 0.8 EQ) 2) (DL + LL) 3) (DL + EQ)

3. RESULTS AND DISCUSSION

3.1 Bare frames and frames with zip type of bracing

Table 2: Variation of axial force- Ra, shear force,-Rs and bending moment- Rm in segment C₁ of *bare frame* having specific no. of bays as depth of beam is changed

No. of		I	Axial force, R _a	(G + 11)				
	Beam Depth							
buys	350	400	450	500	550	600		
4	2568.1	2615.0	2659.4	2701.26	2740.5	2773.3		
5	2564.1	2609.3	2653.2	2694.7	2732.3	2768.7		
	$\mathbf{Ponding moment } \mathbf{P} = (C \mid 11)$							

No. of bays	Benaing moment, R_m (G+11)								
	Beam Depth								
	350	400	450	500	550	600			
4	258.990	256.837	254.879	253.509	252.530	251.747			
5	265.018	262.457	260.486	258.713	257.531	256.743			
5	265.018	262.457	260.486	258.713	257.531	256.7			

No. of bays	Shear force, R_s (G + 11)								
	Beam Depth								
	350	400	450	500	550	600			
4	48.780	48.34242	48.02412	47.7456	47.546	47.387			
5	49.614	49.133	48.732	48.411	48.171	48.011			

Table 3: Variation of axial force, Ra, shear force, Rs and bending moment, Rm in segment C₁ of *fully braced frame* having specific no. of bays as depth of beam is changed

No. of bays	Axial force, R _a (G + 11)								
	Beam Depth								
	350	400	450	500	550	600			
4	2606.1	2617.5	2627.7	2637.8	2649.2	2659.4			
5	2614.3	2624.4	2635.7	2645.7	2657.0	2668.3			

No. of bays		S	hear force, R _s	(G + 11)					
	Beam Depth								
	350	400	450	500	550	600			
4	58.567	57.732	57.215	57.016	56.976	57.135			
5	59.432	58.551	58.07	57.829	57.789	57.909			

ISSN: 2394-3696

No. of bays	Bending moment, R _m (G+11)								
	Beam Depth								
	350	400	450	500	550	600			
4	331.617	320.067	310.083	301.47	294.031	287.179			
5	334.77	323.145	313.293	304.426	296.742	289.845			

Table 4, 5 and 6 shows variation of axial force- Ra, shear force- Rs and bending moment- Rm respectively in member C_1 in partially braced frames with 4-bay (Mem. C_1 , L.C.7) bottom node

Fable 4: Variation	of Axial force in	member C ₁ in	partially	[,] braced f	rames

Ln	Ra for one bay braced at a time	Ln	Ra for two bays braced at a time	Ln	Ra for three bays braced at a time	Ln	Bare Fr.	Fully braced fr.
2.485	0.952	4.796	0.924	7.115	0.915	2.485	1.000	1.122
2.996	0.936	4.890	0.937	7.124	1.171	2.996	1.000	1.122
3.466	0.944	4.949	1.251	7.203	1.182	3.466	1.000	1.122
3.689	1.302	5.438	0.916	7.759	1.106	3.689	1.000	1.122
		5.489	1.189			4.796	1.000	1.122
		5.838	1.168			4.890	1.000	1.122
						4.949	1.000	1.122
						5.438	1.000	1.122
						5.489	1.000	1.122
						5.838	1.000	1.122
						7.115	1.000	1.122
						7.124	1.000	1.122

7.203

7.759

1.000

1.000

1.122

1.122

Table 5: Variation of Shear force in member C ₁ in <i>partially braced frames</i>										
Ln	Rs for one bay braced at a time	Ln	Rs for two bays braced at a time	Ln	Rs for three bays braced at a time	Ln	Bare Fr.	Fully braced fr.		
2.485	0.689	4.796	0.733	7.115	1.046	2.485	1.000	1.976		
2.996	0.818	4.890	1.006	7.124	1.718	2.996	1.000	1.976		
3.466	1.163	4.949	1.793	7.203	2.006	3.466	1.000	1.976		
3.689	2.114	5.438	1.111	7.759	2.038	3.689	1.000	1.976		
		5.489	1.857			4.796	1.000	1.976		
		5.838	2.137			4.890	1.000	1.976		
						4.949	1.000	1.976		
						5.438	1.000	1.976		
						5.489	1.000	1.976		
						5.838	1.000	1.976		
						7.115	1.000	1.976		
						7.124	1.000	1.976		
						7.203	1.000	1.976		
						7.759	1.000	1.976		

Figure 4. Variation of Rs for all cases of bays braced and Frame type braced fr. with 4-bay (Mem. C1, L.C.7) bottom node

|--|

Ln	Rm for one bay braced at a time	Ln	Rm for two bays braced at a time	Ln	Rm for three bays braced at a time	Ln	Bare Fr.	Fully braced fr.
2.485	0.479	4.796	0.354	7.115	0.368	2.485	1.000	0.514
2.996	0.471	4.890	0.427	7.124	0.498	2.996	1.000	0.514
3.466	0.541	4.949	0.565	7.203	0.547	3.466	1.000	0.514
3.689	0.705	5.438	0.411	7.759	0.535	3.689	1.000	0.514
		5.489	0.558			4.796	1.000	0.514
		5.838	0.593			4.890	1.000	0.514
						4.949	1.000	0.514

ISSN: 2394-3696

5.438	1.000	0.514
5.489	1.000	0.514
5.838	1.000	0.514
7.115	1.000	0.514
7.124	1.000	0.514
7.203	1.000	0.514
7 7 5 9	1 000	0514

Figure 5. Variation of Rm for all cases of bays braced and Frame type braced fr. with 4-bay (Mem. C1, L.C.7) bottom node

Table 7, 8 and 9 shows variation of axial force, Ra, shear force, Rs and bending moment, Rm respectively in member C_1 in partially braced frames with 5-bay (Mem. C1, L.C.7) bottom node

Table 7. variation of Axial force in member C ₁ in partially braced frames								
	Ra for		Ra for		Ra for		Ra for	
Ln	one	Ln	two	Ln	three	Ln	four	
	bay		bays		bays		bays	
	braced		braced		braced		braced	
	at a time		at a time		at a time		at a time	
2.565	0.957	4.812	0.928	7.118	0.916	9.421	0.910	
3.045	0.942	4.875	0.934	7.124	0.926	9.422	1.144	
3.526	0.941	4.970	0.944	7.131	1.201	9.429	1.187	
3.738	0.952	5.024	1.290	7.203	0.923	9.507	1.155	
3.912	1.358	5.451	0.918	7.209	1.212	10.063	1.103	
		5.485	0.931	7.282	1.223			
		5.537	1.233	7.758	0.909			
		5.838	0.922	7.763	1.148			
		5.861	1.226	7.804	1.175			
		6.116	1.217	8.146	1.138			

 Table 7: Variation of Axial force in member C1 in partially braced frames

For each abscissa that is for logarithm of reference number pertaining to above cases For bare frame, $R_a = 1$, For fully braced frame, $R_a = 1.122$

Figure 6. Variation of Ra for all cases of bays braced and Frame type braced fr. with 5-bay (Mem. C1, L.C.7) bottom node

Ln	Rs for one bay braced	Ln	Rs for two bays braced	Ln	Rs for three bays braced	Ln	Rs for four bays braced
	at a time		at a time		at a time		at a time
2.565	0.673	4.812	0.630	7.118	0.734	9.421	1.070
3.045	0.729	4.875	0.744	7.124	0.974	9.422	1.720
3.526	0.872	4.970	1.040	7.131	1.705	9.429	2.013
3.738	1.242	5.024	1.877	7.203	1.102	9.507	2.105
3.912	2.262	5.451	0.791	7.209	1.818	10.063	2.078
		5.485	1.071	7.282	2.120		
		5.537	1.887	7.758	1.121		
		5.838	1.195	7.763	1.810		
		5.861	1.991	7.804	2.114	1	
		6.116	2.301	8.146	2.185	1	

Table 8: Variation of Shear force in member C₁ in partially braced frames

For each abscissa that is for logarithm of reference number pertaining to above cases For bare frame, $R_s = 1$, For fully braced frame, $R_s = 1.976$

Figure 7. Variation of Rs for all cases of bays braced and Frame type braced fr. with 4-bay (Mem. C1, L.C.7) bottom node

Table 9: Variation of Bending moment in member C ₁ in partially braced frames								
	Rm for one	Ln	Rm for two	Ln	Rm for three	Ln	Rm for four	
Ln	bay braced		bays braced		bays braced		bays braced	
	at a time		at a time		at a time		at a time	
2.565	0.507	4.812	0.356	7.118	0.323	9.421	0.367	
3.045	0.486	4.875	0.403	7.124	0.387	9.422	0.492	
3.526	0.520	4.970	0.465	7.131	0.520	9.429	0.553	
3.738	0.598	5.024	0.616	7.203	0.412	9.507	0.566	
3.912	0.782	5.451	0.372	7.209	0.553	10.063	0.548	
		5.485	0.453	7.282	0.599			
		5.537	0.599	7.758	0.394			
		5.838	0.459	7.763	0.527			
		5.861	0.621	7.804	0.587			
		6116	0.662	8146	0 5 9 2			

For each abscissa that is for logarithm of reference number pertaining to above cases For bare frame, $R_m = 1$, For fully braced frame, $R_m = 0.514$

Figure 8. Variation of Rm for all cases of bays braced and Frame type braced fr. with 4-bay (Mem. C1, L.C.7) bottom node

4. CONCLUSIONS

4.1 About Bare Frame

i. For a bare frame irrespective of number of bays C_1 is found to attract about 6.5 to 8% additional

axial force as the beam depth increases from 350 mm to 600 mm.

ii. Shear force marginally reduces as the beam depth increases. Percent reduction in the shear for

ISSN: 2394-3696

600mm beam depth was found to be 2.9 for 4 bay and 3.3 for 5 bay frame.

- iii. The bending moment is found to reduce about 28% to 15% for 4 and 5 bay structures respectively for beam depth 600mm
 - 4.2 About Fully Braced Frame
- i. When compared with bare frames, it is found that axial force attracted by column segment at all levels remains almost same, shear force increases and bending moment reduces substantially.
- ii. All frames exhibit a continuous rise in the axial force as the depth of beam increases.
- iii. Shear force reduces as the depth of beam increases. This reduction was found to be 2.5 to 2.6% for 600mm beam depth for 4 bay and 5 bay structures respectively.
- iv. Braces are subject prominently to axial compression and carry negligibly small shear and bending moment

Following table reveals the reduction in moment in worst loaded column segment C_1 in fully braced frames in comparison with bare frame.

No of	% Reduction in moment for worst
Bays	(G+11)
4	83.02
5	83.97

4.3 About Partially Braced Frames

A) Bay Wise Bracing

Percent saving in material cost and corresponding optimally located bracing pattern for 12 storeyed structure is found as given below.

No. of	No. of bays	Optimum bracing	%
4	Two	2(central)	11.00
5	Three	3(central)	15.07

REFERENCES

- 1) I.S. 1893 (part I) 2002, criteria for earthquake resistant design of structure, general provision and building, *Bureau of Indian Standards, New Delhi.*
- V.N. Vazirani and M.M. Ratawani, (1985) "Analysis of structures", 10th ed. Khanna pub.
- Chopra A. K., (1997) "Dynamics of structure", 2nd Edition, Prentice Hall of India Pvt. Ltd., New Delhi
- 4) I.S. 1893 (part I) 2002, criteria for earthquake resistant design of structure,

general provision and building, *Bureau of Indian Standards, New Delhi.*

- 5) A. R. Khaloo and M. Mahdi Mohseni, "Nonlinear seismic behavior of RC frames with RC braces", Asian journal of Civil Engineering, Vol. 9, No. 6 (2008).
- Roberto T. LEON and Chaung Sheng YANG, " Special Inverted – V – Braced frames with suspende zipper struts", Department of Civil and Environmental engineering, Georgia, (2001).
- 7) Saptadip sarkar "Design of earth-quake resistant multi-storied rcc building on a sloping ground" Department of Civil engineering National institute of technology Rourkela, India (2010)

8) STAAD-2006 structural analysis and design commercial software.

9) http://

www.

mahapwd.com/training/buildingdesign/16.htm