Paper ID OT 03

# **ALGORITHM FOR NON-LINEAR EQUATIONS**

Pradip Jamkar<sup>1</sup>, Manjusha Tomar<sup>2</sup>, V.M. Kale<sup>3</sup>

1-3[Department of Basic Engineering, Indira College of Engineering & Management, Pune]

## Abstract:

The study is aimed at comparing the rate of performance, the rate of convergence of Bisection and Trisection method. These method have been applied in parallel environment. It was then concluded that Trisection method is most effective and gives good result.

**Keywords:** Parallel Numerical Algorithm, Bisection method, Trisection Method.

#### **INTRODUCTION**

The most basic problem in Numerical Analysis (methods) is the root-finding problem. For a given function f(x), the process of finding the root involves finding the value of x for which f(x) = 0. If the function equals zero, x is the root of the function. A root of the equation f(x) = 0 is also called a zero of the function f(x). f(x) may be algebraic, trigonometric or transcendental function. The determination of any unknown appearing implicitly in scientific or engineering formulas gives rise to root finding problem [1]. The common root finding methods include Bisection, Newton- Raphson, False position, Secant methods [4] etc. Different methods converge to the root of different rates. That is, some methods are faster in converging the root than others. The rate of convergence could be linear, quadratic or otherwise. The higher the order the faster the method converges [2].

#### **METHOD**

Bisection method is a simple root finding method. It requires prior knowledge of the value of a continuous function at the endpoints of a given interval where the root exist. The function value at the endpoints must have different signs (i.e.). Using the Intermediate Value Theorem, bisection method iterates and reduces the interval into halves, disregarding the where no sign change occurs. It will iterate until it converges to the root or the level of desired accuracy is reached.

#### **ROOT FINDING ALGORITHM**

Consider a transcendental equation f(x) = 0 which has a zero in the interval [a,b] and f(a) \* f(b) < 0. Bisection scheme computes the zero, say c, by repeatedly halving the interval [a,b]. That is, starting with c = (a+b) / 2. The interval [a,b] is replaced either with [c,b] or with [a, c] depending on the sign of f(a) \* f(c). This process is continued until the zero is obtained. Since the zero is obtained numerically the value of c may not exactly match with all the decimal places of the analytical solution of f(x) = 0 in the interval [a,b]. Hence any one of the following mechanisms can be used to stop the bisection iterations:

 $\square$  C1. Fixing a priori the total number of bisection iterations N i.e., the length of the interval or the maximum error after N iterations in this case is less than | b-a | / 2<sup>N</sup>.

 $\mathbb{C}$  C2. By testing the condition  $|c_i - c_{i-1}|$  (where i are the iteration number) less than some tolerance limit, say epsilon, fixed a priori.

 $\square$  C3. By testing the condition | f (c<sub>i</sub>) | less than some tolerance limit alpha again fixed a priori.

# PARALLEL ALGORITHM

Parallel Bisection Method is a method to convert the bisection algorithm to parallelism by distributed kth intervals of roots over kth cores.

Given f, a[k], b[k], and  $\delta$ (tolerance) Step 1. Do in parallel for four roots Step 2. i=1 Step 3: c= [a (k) + b (k)]/2 Step 4: compute f(c) and f [a (k)] in parallel Step 5: If f(c) =0 or f(c) <  $\delta$ , then step 9 Step 6: If f(c)\*f [a (k)] < 0 , then b (k) = c Step 7: Else a (k) = c Step 8: i = i+1, go back to step 3. Step 9: stop iteration. Parallel Trisection Method: Given f, a[k], b[k], and  $\delta$ (tolerance) Step 1. Do in parallel for four roots Step 2. i=1 Step 3: c= [2a (k) + b (k)]/3 Step 4: compute f(c) and f [a (k)] in parallel Step 5: If f(c) =0 or f(c) <  $\delta$ , then step 9 Step 6: If f(c)\*f [a (k)] < 0 , then b (k) = c Step 7: Else a (k) = c Step 8: i = i+1, go back to step 3. Step 9: stop iteration.

# **RESULT AND DISCUSSION**

We implement the parallel numerical algorithm using MATLAB (R2015a). The case study is a real function have a real roots as a form of quartic function  $f(x) = x^4+3x^3-15x^2-2x+9$  with tolerance  $\delta = 10^{-6}$ , where i=number of iterations, a and b are initial values and c= (2a+b)/3. The result analysis by comparing Bisection and Trisection methods we have seen that Trisection method gives good and effective results by taking minimum elapsed time and less iterations.

|    | Interval =[-6,-4] |             | Interval=[-2,0] |           | Interval =[0,2] |           | Interval =[2,4] |           |
|----|-------------------|-------------|-----------------|-----------|-----------------|-----------|-----------------|-----------|
| I  | С                 | f(c)        | С               | f(c)      | с               | f(c)      | с               | f(c)      |
| 1  | -5.000000         | -106.000000 | -1.000000       | -6.000000 | 1.000000        | -4.000000 | 3.000000        | 30.000000 |
| 2  | -5.500000         | -17.812500  | -0.500000       | 5.937500  | 0.500000        | 4.687500  | 2.500000        | -3.812500 |
| 3  | -5.750000         | 47.363281   | -0.750000       | 1.113281  | 0.750000        | 0.644531  | 2.750000        | 9.644531  |
| 4  | -5.625000         | 12.834229   | -0.875000       | -2.157959 | 0.875000        | -1.638428 | 2.625000        | 2.135010  |
| 5  | -5.562500         | -2.960190   | -0.812500       | -0.450668 | 0.812500        | -0.482407 | 2.562500        | -1.024155 |
| 6  | -5.593750         | 4.817491    | -0.781250       | 0.349244  | 0.781250        | 0.085267  | 2.593750        | 0.507859  |
| 7  | -5.578125         | 0.898990    | -0.796875       | -0.046229 | 0.796875        | -0.197589 | 2.578125        | -0.269887 |
| 8  | -5.570313         | -1.037988   | -0.789063       | 0.152628  | 0.789063        | -0.055907 | 2.585938        | 0.116032  |
| 9  | -5.574219         | -0.071349   | -0.792969       | 0.053480  | 0.785156        | 0.014745  | 2.582031        | -0.077663 |
| 10 | -5.576172         | 0.413357    | -0.794922       | 0.003695  | 0.787109        | -0.020565 | 2.583984        | 0.019000  |
| 11 | -5.575195         | 0.170888    | -0.795898       | -0.021250 | 0.786133        | -0.002906 | 2.583008        | -0.029378 |
| 12 | -5.574707         | 0.049741    | -0.795410       | -0.008773 | 0.785645        | 0.005920  | 2.583496        | -0.005200 |
| 13 | -5.574463         | -0.010812   | -0.795166       | -0.002538 | 0.785889        | 0.001507  | 2.583740        | 0.006897  |
| 14 | -5.574585         | 0.019463    | -0.795044       | 0.000579  | 0.786011        | -0.000699 | 2.583618        | 0.000848  |
| 15 | -5.574524         | 0.004325    | -0.795105       | -0.000979 | 0.785950        | 0.000404  | 2.583557        | -0.002176 |
| 16 | -5.574493         | -0.003243   | -0.795074       | -0.000200 | 0.785980        | -0.000148 | 2.583588        | -0.000664 |
| 17 | -5.574509         | 0.000541    | -0.795059       | 0.000190  | 0.785965        | 0.000128  | 2.583603        | 0.000092  |
| 18 | -5.574501         | -0.001351   | -0.795067       | -0.000005 | 0.785973        | -0.000010 | 2.583595        | -0.000286 |
| 19 | -5.574505         | -0.000405   | -0.795063       | 0.000092  | 0.785969        | 0.000059  | 2.583599        | -0.000097 |
| 20 | -5.574507         | 0.000068    | -0.795065       | 0.000043  | 0.785971        | 0.000025  | 2.583601        | -0.000003 |
| 21 | -5.574506         | -0.000169   | -0.795066       | 0.000019  | 0.785972        | 0.000008  | 2.583602        | 0.000044  |
| 22 | -5.574506         | -0.000050   | -0.795066       | 0.000007  | 0.785972        | -0.000001 | 2.583601        | 0.000021  |
| 23 | -5.574507         | 0.000009    | -0.795066       | 0.000001  | 0.785972        | 0.000003  | 2.583601        | 0.000009  |
| 24 | -5.574506         | -0.000021   |                 |           | 0.785972        | 0.000001  | 2.583601        | 0.000003  |
| 25 | -5.574506         | -0.000006   |                 |           |                 |           | 2.583601        | 0.000000  |
| 26 | -5.574506         | 0.000001    |                 |           |                 |           |                 |           |
| 27 | -5.574506         | -0.000002   |                 |           |                 |           |                 |           |
| 28 | -5.574506         | -0.000000   |                 |           |                 |           |                 |           |

Table (1) Results of Bisection Parallel Algorithm

|          | Interva           | al [-6,-4]   | Interval [-2,0]              |                        | Interval [0,2] |              | Interval [2,4] |              |
|----------|-------------------|--------------|------------------------------|------------------------|----------------|--------------|----------------|--------------|
| 1        | С                 | f(C)         | С                            | f(C)                   | С              | f(C)         | С              | f(C)         |
| 2        | ۔<br>5.3333333333 | -53.02469136 | -1.3333333333                | -18.95061728           | 0.666666666    | 2.086419753  | 2.6666666667   | 4.456790123  |
| 3        | -<br>5.77777778   | 55.58680079  | -0.888888889                 | -2.556774882           | 1.111111111    | -6.101356501 | 2.222222222    | -12.21018137 |
| 4        | -5.62962963       | 14.04244121  | -0.592592593                 | 4.416717942            | 0.814814815    | -0.524760039 | 2.37037037     | -8.496399412 |
| 5        | -<br>5.530864198  | -10.59400494 | -0.790123457                 | 0.125754549            | 0.716049383    | 1.241302096  | 2.469135802    | -5.058594614 |
| 6        | ۔<br>5.596707819  | 5.565978396  | -0.855967078                 | -1.622889924           | 0.748971193    | 0.6627874    | 2.534979424    | -2.29649096  |
| 7        | ۔<br>5.574759945  | 0.062866287  | -0.834019204                 | -1.022340713           | 0.770919067    | 0.271139589  | 2.578875171    | -0.233085545 |
| 8        | 5.560128029       | -3.540878415 | -0.819387289                 | -0.631785281           | 0.785550983    | 0.007611111  | 2.608139003    | 1.245111684  |
| 9        | -5.56988264       | -1.144134799 | -0.809632678                 | -0.375778825           | 0.795305594    | -0.169087269 | 2.588629782    | 0.250391532  |
| 10       | 5.573134177       | -0.34010794  | -0.803129604                 | -0.207048203           | 0.78880252     | -0.051200651 | 2.582126708    | -0.072947542 |
| 11       | 5.574218022       | -0.071529675 | -0.798794222                 | -0.095423724           | 0.786634829    | -0.01198294  | 2.5842944      | 0.034377682  |
| 12       | 5.574579304       | 0.018059718  | -0.795903967                 | -0.021390842           | 0.785912265    | 0.001080862  | 2.582849272    | -0.037222883 |
| 13       | -<br>5.574458877  | -0.011806931 | -0.79397713                  | 0.02779398             | 0.78615312     | -0.003273249 | 2.583330981    | -0.013378443 |
| 14       | -<br>5.574539162  | 0.008103777  | -0.795261688                 | -0.004980751           | 0.78599255     | -0.000370454 | 2.583652121    | 0.002530301  |
| 15       | -5.5745124        | 0.001466701  | -0.794833502                 | 0.005950893            | 0.785939027    | 0.000597096  | 2.583438028    | -0.008076635 |
| 16       | -<br>5.574494559  | -0.00295792  | -0.795118959                 | -0.001336121           | 0.785956868    | 0.000274582  | 2.583509392    | -0.004541482 |
| 17       | -<br>5.574506453  | -8.18E-06    | -0.795023807                 | 0.001093216            | 0.785968762    | 5.96E-05     | 2.583556968    | -0.002184439 |
| 18       | -<br>5.574510418  | 0.000975073  | -0.795087242                 | -0.000526305           | 0.785976691    | -8.38E-05    | 2.583588686    | -0.000612956 |
| 19       | -<br>5.574509096  | 0.000647321  | -0.795066097                 | 1.36E-05               | 0.785971405    | 1.18E-05     | 2.583609831    | 0.000434753  |
| 20       | ۔<br>5.574508215  | 0.00042882   | -0.795080193                 | -0.000346351           | 0.785973167    | -2.01E-05    | 2.583595734    | -0.000263725 |
| 21       | -<br>5.574507628  | 0.000283153  | -0.795075495                 | -0.000226383           | 0.785971992    | 1.17E-06     | 2.583600433    | -3.09E-05    |
| 22       | ۔<br>5.574507236  | 0.000186041  | -0.795072362                 | -0.000146404           | 0.785972384    | -5.91E-06    | 2.583603566    | 0.000124316  |
| 23       |                   |              | -0.795070274                 | -9.31E-05              |                |              | 2.583601477    | 2.08E-05     |
| 24       |                   |              | -0.795068881                 | -5.75E-05              |                |              | 2.583600781    | -1.37E-05    |
| 25<br>26 |                   |              | -0.795067953<br>-0.795067334 | -3.38E-05<br>-1.80E-05 |                |              |                |              |
| 26       |                   |              | -0.795067334                 | -1.80E-05<br>-7.51E-06 |                |              |                |              |
| 21       |                   |              | -0.795000922                 | -7.516-00              |                |              |                |              |

## Table (2) Results of Trisection Parallel Algorithm

#### REFERENCES

[1] Biswa Nath Datta(2012), lecture notes on numerical solution of root finding problems. www.math.niu.edu/dattab.

[2] Charles A and W. W. Cooper (2008), Non-linear power of adjacent extreme points methods in linear programming, Econometrica Vol.25 (1) pp. 132-153.

[3] A.J. Maeder and S.A. Wynton, Some parallel for polynomial root finding, Journal of computation and applied mathematics 18, 71-81, North Holland, 1987.

[4] Srivastava, R.B. and Srivastava, S. (2011), Comparison of Numerical Rate of Convergence of Bisection, Newton and Secant Methods. Journal of Chemical, Biological and Physical Sciences, Vol.2 (1) pp 472-479

[5] Guy E.Blellochand Bruce M.Maggs, Parallel Algorithms, Carnegie Mellon University, ACM Computing Surveys (CSUR), 1996.

[6] R.L.Burden, J.D. Faires, Numerical Analysis, 9th Edition, Brooks/Cole, 2011.

[7] R.L.Burden, J.D. Faires, Numerical Analysis, 3rd Edition, PWS Publishers, Boston, MA, 1985.