IMPACT OF TOXIC SEDIMENT ON BIOCHEMICAL ASPECT OF GPT AND GOT OF CHANNA PUNCTATUS

DR. KALPANA VERMA NARAYANKAR

ABSTRACT

In this study we procured toxic sediment from Amlakhadi water channel in Bhuj where paper, dye and textile industries were dumping their toxic wastes. We took Channa punctatus to test the toxicity of the sediment in the lab to find the NOEC for their GPT and GOT.

AIM OF EXPERIMENT

The aim of experiment was to determine the NOEC (No Observation Effect Concentration) of toxic waste for GPT and GOT of fish Channa punctatus.

INTRODUCTION

The serum glutamate oxaloacetic transaminase and serum glutamate pyruvate transaminase function act as a link between carbohydrate and protein metabolism by catalyzing interconversion of strategic compounds like alpha ketoglutarate and alanine to pyruvic acid and glutamic acid, and aspartate and alpha ketoglutaric acid to oxaloacetic acid and glutamic acid respectively (Knox and Greengard,1 985; Watts and Watts, 1974; Martin et al; 1983).

REAGENTS

All the following chemicals and glasswares, used for the study, were of analytical grades. AST / ALT (GOT / GPT) : PO₄ Buffer, $\Box \Box \Box$ -Ketoglutarate, GPT substrates, 2,4 DNPH, 0.4 N NaOH.

Sampling

Biochemistry

The fish were anesthetized until they became motionless and lied at the bottom on ice and then rinsed. Liver, kidney, stomach, intestine and pituitary gland tissues were isolated, weighed and placed immediately in 0.2 M Sucrose solution and crushed together. Afterwards tissues were diluted 19 times of its weight and homogenized and then centrifuged. The clear supernatant was stored in freezer for different bio-chemical tests

SEDIMENT

Organic contents in terms of organic carbons and organic matter, as well as nutrient load in terms of nitrogen and phosphates of the composite sediment, are presented in **Table**

SURVIVAL OF TEST ORGANISMS AT TOXIC SEDIMENT

ACUTE TOXICITY

 LC_{50} value of Channa punctatus was 25.5 gm/l, while values of LC_0 & LC_{100} were 50.0 & 12 gm/l respectively.

SELECTION OF SUBLETHAL DOSES

The three sublethal doses for Channa punctatus were taken as different fractions of their LC_{50} test values i.e.25.5 gm/l respectively.

The three sublethal doses taken for Channa punctatus were 1.2, 0.8 & 0.5 gm/l.

RESULT AND DISCUSSION Nutrient, Organic Load and Heavy Metal Concentrations in Composite Sediments from Amlakhadi

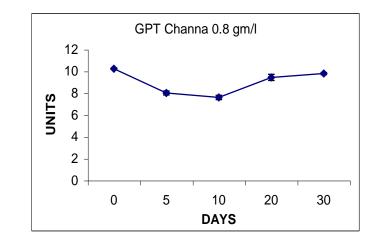
Nutrient & Organic Load					
2.72					
4.7					
245					
49.5					
(in mg / 100 gm)					
6.0					
7.18					
58.27					
6.19					
2763.5					
47.4					
109.75					

ENZYMATIC ANALYSIS SERUM GLUTAMIC PYRUVATE TRANSAMINASES (ALT OR SGPT) CHANNA PUNCTATUS

Table 1 shows that data are highly significant. **Fig. 1** indicates that there was steep decrease in the mean value, i.e. from 15.9515 unit on 0 day to 8.6168 unit on 5th day, 7.9257 unit on 10th day, 4.0282 unit on 20th day and 5.6477 unit on 30th day. **Table 2** shows that data of medium concentration are significant. **Fig. 2** shows that the mean value were initially decreased on 5th & 10th day, i.e. 8.0194 and 7.6067 unit over 0 day mean value of 10.2451 unit. Later it recovered to 9.4480 and 9.7991 unit on 20th and 30th day respectively. **Tables 3 & 4** show that data are insignificant. **Figs. 3 & 4** depict that the mean values of different days of 0.5 gm/l are more or less same as those of control.

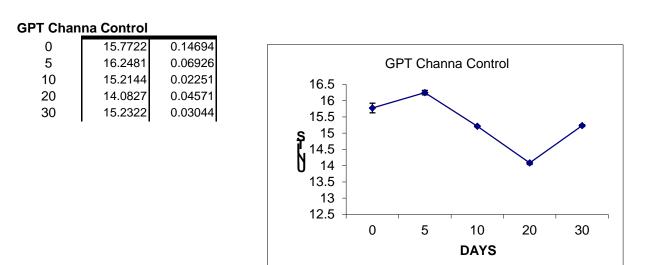
Serum Glutamic Oxaloacetate Transaminases (AST or SGOT)

Channa punctatus


Table 5 shows that data are highly significant. **Fig. 5** shows that there was steep decrease in the mean value i.e. from 6.1582 unit on 0 day to 0.7806 unit on 5th day and 0.1390 unit on 10th day. Then the values were gradually increased on 20th & 30th day, i.e. 1.0294 & 2.4750 unit respectively. **Table 6** shows that data are significant. **Fig.6** shows that the mean value was initially decreased on 5th & 10th day, i.e. 2.6735 and 3.3718 unit from mean value on 0 day, i.e. 6.3376 unit. Later it recovered to 5.8691 and 5.8209 unit on 20th and 30th day respectively. **Tables 7 & 8** show that data are not significant. **Figs. 7 & 8** depict that the mean values of 0.5 gm/l are comparable to mean values of control on different days.

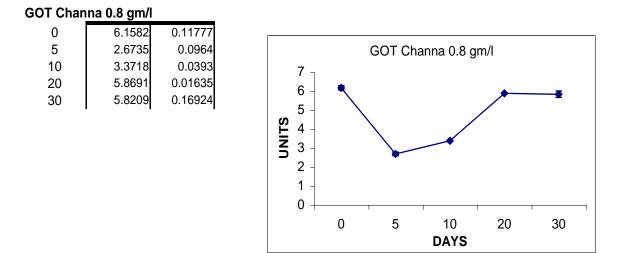
	GPT Channa 1.2 gm/l									
20										
15 -	•									
N 10 -										
U 5 -				-	-					
0 +		1	1 1		,					
	0	5	10 DAYS	20	30					

GPT Chan <u>na 1.2 gm/l</u>								
0	15.9515	0.08623						
5	8.6168	0.15012						
10	7.9257	0.07965						
20	4.0282	0.48568						
30	5.6477	0.03949						

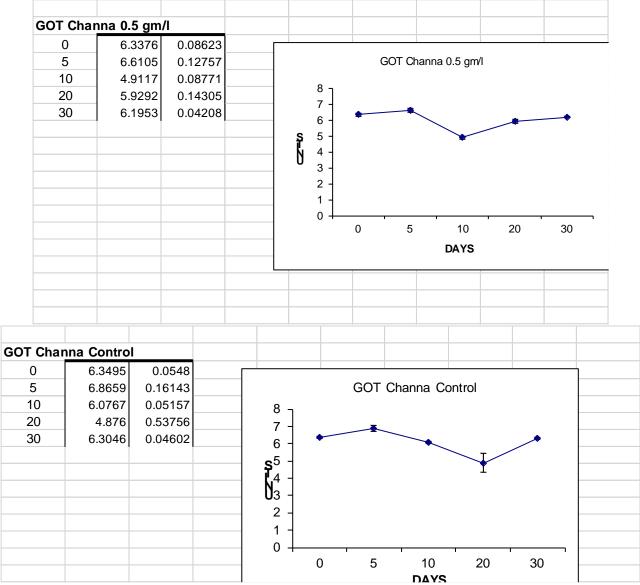

0	10.2451	0.0814
5	8.0194	0.17602
10	7.6067	0.19459
20	9.448	0.27614
30	9.7991	0.10476

UNIT : nano mole pyruvate formed / min / mg protein at 37°C. Mean enzymatic responses of Channa punctatus to toxic sediment.

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [1JIERT] ISSN: 2394-3696 VOLUME 6, ISSUE 02, Feb.-2019


GPT Chai	nna 0.5 gm	/I						
0	15.7722	0.14694						
5	13.9786	0.22431		GPT (Channa 0.5	5 gm/l		
10	15.1484	0.16385	17 ₋					
20	16.299	0.08594	16.5 -			*		
30	15.9012	0.05295	16 - 15.5 -	₹			-	
			15.5 - S 15 -		X			
			\$ 15 - 1 4.5 -					
			Ŋ14 - 13.5 - 13 -					
			 13.5 -					
			 12.5 -					
			12 🕂	1			· · · ·	
				0 5	5 10	20	30	
					DAY	S		

UNIT : nano mole pyruvate formed / min / mg protein at 37°C. Mean enzymatic responses of Channa punctatus to toxic sediment.


NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 6, ISSUE 02, Feb.-2019

GOT Char	nna 1.2 gm	/I							
0	6.1582	0.13476							
5	0.7806	0.34625				GOT C	hanna 1.2	gm/l	
10	0.139	0.04599		7 n				-	
20	1.0294	0.05921		6 -	±				
30	2.475	0.05266		5 -					
					```	$\backslash$			
				<b>SLIND</b> 3 -		$\backslash$			
						$\langle \rangle$			
				2 -					
				1 -		The second se	_		
				o 🕂				-	I
					0	5	10	20	30
							DAYS		
			L		_				



UNIT : nano mole oxyloacetate formed / min / mg protein at 37°C. Mean enzymatic responses of Channa punctatus to toxic sediment.

#### NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 6, ISSUE 02, Feb.-2019



UNIT : nano mole oxyloacetate formed / min / mg protein at 37°C. Mean enzymatic responses of Channa punctatus to toxic sediment.

### **CONCLUSION**

In the present study SGPT and SGOT show sharp decrease in highest concentration. Both SGPT and SGOT show initial decrease and then recovering to normal in medium concentration. For lowest concentration SGPT and SGOT values were compared to the mean value of control during 30 day experiment.

## **BIBLIOGRAPHY**

- Isaiarasu, L. and Haniffa, M.A. (1987). Biochemical changes in the muscle of Mystus armatus I. (bagridae) treated with paper mill effluent. Anjac journal. 7: 29-31
- Jayaraman, J. (1981). Laboratory manual in biochemistry. Wiley Eastern Ltd. Pp. 75-78. II.
- Tandon, R.S. & Chandra, S. (1978) Effect of asphyxiation stress on serum transaminaser (GOT and III. GPT) levels of fresh water cat fish. Clarius batrachus . Z. Tierphysiol. Tieremahr. Futtermittetkd., 40 (1): 34-38.
- Murad, A, and Mustafa, S. (1988) J. Fish Dis., 11: 365-368. IV.