
NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

98 | P a g e

IMPLEMENTATION OF SEQUENTIAL AND PARALLEL ALPHA-BETA

PRUNING ALGORITHM
SRAVYA MANDADI

Software Engineer, BSH Hausgeräte, Bangalore, India

sravyamandadi97@gmail.com

TEJASHWINI B.

Product Engineer, Talisma, Bangalore, India

btejureddy1997@gmail.com

 SANJAN VIJAYAKUMAR

Data Scientist, eMotionRx, Boston, USA

sanjan.svk@gmail.com

ABSTRACT

In the past, game applications were proved to be inefficient compared to present day. This is mostly because of

limitation of computer computation and memory space and inadequate game tree algorithms to help determine

the next move. Games that require extensive searching needed a faster and more efficacious technique.

Alpha-Beta Pruning is one of the most fundamental optimization technique for Minimax algorithm. Just by

passing 2 extra parameters in the Minimax function, namely alpha and beta, this algorithm helps increase the

speed of the game drastically. The pruning helps in eliminating the number of searches whenever there already

exists a better move available in the game tree. In this paper, the effects of Alpha-Beta Pruning on the game

tree are discussed by taking into account bimatrix games such as Tic-Tac-Toe and Checkers etc.

KEY WORDS: Minimax, Alpha-Beta Pruning, Maximizer, Minimizer

INTRODUCTION

Improvement on stacked matrix games such as Chess or Tic-Tac-Toe had always been an area of development

for Artificial Intelligence researchers to mimic the human intelligence. Almost all multiplayer games require a

decision tree and need to identify the possible alternatives for moves as well as select the best one available. In

the games that antedated this technology, the selection process involved a large and complicated tree, thus

resulting in a time consuming and wastage of computational memory. In order to improve upon this, the game

tree search can be associated with Alpha-Beta pruning, which helps to eliminate the number of possible

outcomes that are assessed by the Minimax Algorithm. Even simple games, such as tic-tac-toe or chess, very

large trees are involved for solution finding [1].

In this paper, the operation of the Minimax search procedure and the alpha-beta pruning procedure are

illustrated by using the context of various stacked matrix games such as chess. The players are named Min and

Max with respect to whose turn it is to play; Max being the current player and Min being his opponent. Max

attempts to maximize the ultimate value of the game while Min attempts to minimize the value. Although

there are myriad of strategies that already exist to determine the next move of a player, the Minimax procedure

is one of the most widely used backtracking algorithm that is used in decision making.

Consider the image below, Figure 1, which depicts a simple game tree structure. Here, each node of the tree

p(1) , p(2), p(3) are positions, whereas the arcs from each of the nodes p(1,1), p(1,2), p(1,3), etc are the moves

that each of the players have a chance at. The square nodes indicate it is Max's turn to move while the circles

indicate it is Min's turn [2,3,4]. In the Minimax procedure, the value of the Max position is calculated by

comparing each of the arc values and determining a backed-up maximum value, and similarly with the

successors of the minimum value, a backed-up minimum value is determined. This procedure is used time and

time again until the values at the leaf nodes create a value for the root leaf node itself. For example referencing

to the figure below, of all the arc nodes, the minimum is selected from each. As for the root node, the

maximum of the minimum nodes is selected.

NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

99 | P a g e

Figure 1: Game tree to understand Minimax Theorem

From the above, it can be derived that;

vi = maxai mins-i vi(ai,a-i)………………Eq.1

where: i is the index of the respective player, -i denotes remaining players, ai is represented as the action taken

by player i, a-i is the action by the remaining players and vi is the value of the root node (value function of i).

Algorithm 1: Minimax Algorithm

1. function minimax(node, depth, child):

2. if node is a leaf node:

3. return value of the node

4. for every child node:

5. if max:

6. value= max(child, depth[i]

7. break

8. return value

9. else:

10. value= min(child, depth[i]

11. break

12. return value.

ALPHA-BETA PRUNING

Alpha-Beta pruning is an extension and an optimization technique of the existing algorithm of Minimax.

Though minimax is also used for the game tree, using this algorithm reduces the computational time by a

large amount. By implementing this algorithm, we can search faster throughout the tree and reach the lower

levels of the game tree much faster. This is because Alpha-Beta Pruning cuts off the unnecessary branches

whenever a better path is available. The name Alpha-Beta is given to this algorithm since it passes 2 extra

parameters, Alpha and Beta.

Sequential Alpha-Beta Pruning

The Alpha-Beta pruning algorithm proved to be an improvement over the usual MinMax algorithm that is used

in most Artificial Intelligence games. Although both algorithms aim to find the best resulting path for a

particular player, Alpha-Beta Pruning has a remarkably notable execution time. Since the algorithm eliminates

values that are irrelevant to the final result, it is observed that it serves in a faster time period.

Refer to the sample game tree given in Figure 2. Similar to the Minimax algorithm, the maximizing player’s

nodes are depicted by a square, and minimizing player’s nodes are depicted by a circle. The first step starts

with the top of the tree structure, A. Alpha is given the value of –Infinity and Beta is given that of +Infinity.

NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

100 | P a g e

Alpha and Beta are passed down to the next sequence of child nodes in the tree. At the position of A, the

maximizer must choose the highest value between its child nodes (B and C).

Figure 2: Game tree to understand Alpha-Beta Pruning Theorem

Let’s consider the B path first. At B, it is the minimizer’s turn so here the minimum of the child nodes are

chosen and by his, D is called first. At D, the leaf node is considered and value of D is now to choose between

Alpha and 3, and 3 is chosen as the max value. To decide whether or not to eliminate the other path, the

condition beta is less than or equal to alpha is checked. In this case, this is observed to be false because Alpha

is 3 and Beta is +Infinity. At D, the next leaf node is computed, here Alpha = 5. So the value of D is replaced

with 5. D passes on the value of 5 to its parent node, B. At B, the minimum is computed between Beta and 5.

Hence, the value of Beta is replaced with 5. B checks its other child node E for a value lesser than that of 5. The

value at E is calculated between Alpha and 6, so 6 is the updated value of 6. However, since B is a minimizing

point, the value is retained as 5.

Algorithm 2: Sequential Alpha-Beta Algorithm

1. function SequentialAlphaBeta(node, depth, Max, alpha, beta):

2. if node is a leaf node:

3. return value of the node

4. if Max:

5. BestValue = -Infinity

6. for every child node:

7. value = minimax(node, depth+1, false, alpha, beta)

8. BestValue = max(BestValue, value)

9. alpha = max(alpha, BestValue)

10. if beta <= alpha:

11. break

12. return BestValue

13. else:

14. BestValue = +Infinity

15. for every child node :

16. value = minimax(node, depth+1, true, alpha, beta)

17. BestValue = min(BestValue, value)

18. beta = min(beta, BestValue)

19. if beta <= alpha:

20. break

21. return BestValue

22. SequentialAlphaBeta(0, 0, true, -Infinity, +Infinity)

NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

101 | P a g e

Parallel Alpha-Beta Pruning

In order to further increase the efficiency of the existing Alpha-Beta algorithm, parallelism has been

introduced into this. Over the past few years, there have been different parallel Alpha-Beta Pruning Systems

that have been developed. One amongst them is the classic algorithm which was implemented on sequent

symmetry shared memory multiprocessor system in [9]. Principal-Variation algorithm is another approach, in

which the first branch at a PV node is prioritized even before the remaining branches are searched. With the

advent of this algorithm, many optimization techniques have been proposed. Young Brothers Wait Concept

[11] is one which follows the master-slave approach. Here, the first sibling node is searched before spawning

the remaining siblings in parallel. Dynamic Tree Splitting is similar to that of Young Brothers Wait Concept,

except it disregards the use of master-slave and adopts peer-to-peer approach instead. This method uses

multiple processors that process each node separately and is responsible for returning the node’s evaluation to

its parent.

Many concepts have been experimented with in various environments like reordering or beam search. Beam

search is an algorithm which is used for efficient path finding and reduces memory usage as well. Apart from

traditional Alpha-Beta Pruning, the same has been implemented on Graphics Processing Unit; in which

different size boards would be used to decrease the computational time required. By using GPUs, parallel

bigger boards provide a faster celerity than that of serial smaller board.

Algorithm 3: Sequential Alpha-Beta Algorithm

1. function ParallelAlphaBeta(node, depth, α, β, MaxP)

2. if depth = 0 or node is a leaf node

3. return value of node

4. if MaxP

5. value = -∞

6. while there exists child nodes in parallel

7. do

8. value = max(value, ParallelAlphaBeta(child, depth-1,α, β, FALSE)

9. α = max(α, value)

10. if β ≤ α then

11. break

12. return value

13. else

14. value = +∞

15. while there exists child nodes in parallel do

16. value = min(value, ParallelAlphaBeta(child, depth,–1, α, β, TRUE)

17. β = min(β, value)

18. if β ≤ α

19. break

20. return value

IMPLEMENTATION

As mentioned before, this algorithm could be implemented on various platforms that allow parallelism. The

method used here is a shared memory model called OpenMP. For this platform we need to have some

prerequisites that are needed for the installation like a device with 8GB RAM and OpenMP installed.

Parallel Alpha-Beta Pruning for Stacked Matrix Games

Unlike Minimax, Alpha-Beta algorithm isn’t one that incorporates parallelism on its own. By processing

multiple child nodes concurrently in the game tree, parallelism has been introduced into this algorithm. If the

best move is found and can be evaluated first, the others can be eliminated. However, on doing this, it might

be possible that this technique takes longer amount of time that classical sequential Pruning. In order to avoid

this, each node is allocated to a processor, following the root splitting algorithm. Clusters are formed with each

NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

102 | P a g e

of the children nodes and are held responsible by a processor. So effectively, each child is processed along with

its roots and is reported back to the root node, where the best path is determined. A similar effective method is

reordering the child nodes of a leaf node to explore the sub-tree on their own, hence reducing the time and

number of paths that are encountered. Beam search is yet another algorithm which sorts the best of paths. It

simplifies and priorities the nodes in breadth first order. The algorithm decides the least effective ones and

discards them and explores the remaining path until the best one is found. This is also another way to increase

the productivity of the algorithm and reducing computational time.

In order to implement the traditional sequential Alpha-Beta Pruning algorithm, the language used is C++. In

order to parallelize, the algorithm must be implemented in Open MP in order to get an effective result. Open

MP Multi Processing is one application programming interface which supports parallelization and consists of

a multi top platform based shared memory. Open MP is a multithreading framework that is used for

parallelization. In this framework, master-slave approach is followed, wherein the slaves run simultaneously,

each performing their own task in the runtime environment. This is a shared memory system where a single

space is accessible by multiple processors, but each slave/string has an id which cannot be accessed by others.

The master process has an address space of 0 whereas the other processes have the address space of a whole

number. On executing, the district processes join the master process, since each process performs the

parallelized segment of code on its own. In this experiment, Open MP has been used to implement Alpha-beta

pruning onto a shared memory.

Open MP is chosen since the API has the ability to perform parallelization as well as partition the code among

the different processes to execute at a much faster and efficient manner. These processes can utilize work

sharing and partition the code and execute their own task and later be joined to the master to be evaluated.

During runtime, the partitioned segments of the code are assigned to different processors. On associating

Alpha-Beta pruning with Open MP, the root split algorithm is assigned to a thread from the pool of free

threads. Every thread is assigned to individual process in the running state which decides which branch is the

best and is returned to the master process. The threads perform the parallelization of the segmented codes by

using omp_get_thread_num(). This is used to get the address of each of the processors and the master process.

EXPERIMENTAL RESULTS

Figure 3 displays the computational time that is needed for the implementation of parallel and sequential

Alpha-Beta Pruning distinctively in Tic-Tac-Toe. As shown, the time needed to compute the best path by

using parallelization is significantly lesser than that of the sequential Alpha-Beta Pruning. It is observed that

the serial time decreases when the player’s moves are decreasing. This is because in that case, there would be

lesser branches to compute the optimal path from. Because of this, from the graph it is observed that for the last

few moves, both parallelization and sequential method of Alpha-Beta Pruning have almost the same

computational factor. Sequential Alpha-Beta Pruning time decreases linearly when the number of sub-trees to

be checked is decreased. When the sub-trees are minimal, the slaves are free and this causes overhead in the

multithread process. In almost all cases, sequential Alpha-Beta Pruning took longer than that of parallel.

Parallel Alpha-Beta Pruning is 1.8times faster than Sequential.

Figure 3: Comparison study between Parallel and Sequential Alpha-Beta Pruning using Tic-Tac-Toe

NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

103 | P a g e

Figure 4 depicts the comparison of computational values between Sequential and Parallel execution of

Alpha-Beta Pruning Algorithm in the game Checkers. By this figure, it is observed that Sequential Alpha-Beta

Pruning always took considerably large amount of time compared to the Parallel implementation of the same.

As the moves in the game progressed, the time taken to compute the best possible path has also increased in

both Sequential and Parallel. Parallel Alpha-Beta Pruning is averaged to be 2.97 times the Sequential

methodology.

Figure 4: Comparison study between Parallel and Sequential Alpha-Beta Pruning using Checkers

Apart from this, the difference between using reordering technique and search beam optimization has also

been explored. It can be observed from Figure 5 that Beam Search is 2.45 times more efficient that of

reordering implementation. The number of nodes is indirectly proportional to the performance. The more

number of nodes, the lesser the performance of the algorithm and vice versa. From this, it can be said that the

number of nodes visited by the search beam optimization technique is lesser than the reordering approach, and

thus decreases the computational time.

Figure 5: Comparison Between Reordering and Beam Search

CONCLUSION

Simple stacked matrix games have been used to identify the difference in computational speed and efficiency

between Sequential and Parallel Alpha-Beta Pruning techniques. Experimental results of Tic-Tac-Toe and

Checkers have been observed along with the approach of reordering and search beam optimization technique.

From the results of this experiment, it is been observed that Parallel Alpha Beta Pruning is considerably more

efficient and consumes lesser time than that of Sequential. From the 2 games that have been experimented,

different computational factors have been derived based on the board size and different number of nodes.

NOVATEUR PUBLICATIONS

INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]

ISSN: 2394-3696 Website: ijiert.org

VOLUME 7, ISSUE 8, Aug.-2020

104 | P a g e

In this paper, the functionality of Minimax algorithm and Alpha-Beta Pruning Algorithm have been studied

with an example. By experimenting with real time game trees, which are of stacked matrix games, simulations

of each game have been displayed. These results can be extended based on other algorithms that can further

enhance the efficiency of game trees by using neural networks.

REFERENCES

1) Ballard, B. W. 1983. The Minimax search procedure for trees containing chance nodes. Artificial

Intelligence 21(3):327–350.

2) Sturtevant, N. R., and Korf, R. E. 2000. On pruning techniques for multi-player games. In Proceedings of

the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative

Applications of Artificial Intelligence, AAAI/IAAI 2000, 201–207.

3) Sturtevant, N. R. 2005. Leaf-value tables for pruning nonzero-sum games. In IJCAI-05, Proceedings of the

Nineteenth International Joint Conference on Artificial Intelligence, 317–323. Edinburgh, Scotland, UK:

Professional Book Center.

4) C. M. M Guidry, “Techniques to parallelize chess.” [Online]. Available:

https://pdfs.semanticscholar.org/8e1c/9f70aa4849475199e26ccd3e21c66 2e2d801.pdf

5) C. wiki, “Alpha-beta,” 7 June 2019. [Online]. Available: https://www.chessprogramming.org/Alpha-Beta

6) S. D. G. V. Akansha Kumari, Shreya Singh, “Parallelization of alpha beta pruning algorithm for enhancing

the two player games,” vol. 4, pp. 74–81, Feb 2017.

7) R. S. Kamil Rocki, “Parallel minimax tree searching on gpu,” 2010, . (Eds.): PPAM 2009.

8) N. G. Damjan Strnad, “Parallel alpha-beta algorithm on the GPU,” Journal of Computing and Information

Technology, vol. 19, no. 4, pp. 269–274, 2011.

9) H. L. N. Robert M Hyatt, Bruce W Suter, “A parallel alpha/beta tree searching algorithm,” IEEE

Transaction on Parallel and Distributed Systems, vol. 10, pp. 299–308, May 1989, dOI : 10.1016/0167-

8191(89)90102-6.

10) Shubhendra Pal Singhal, M. Sridevi, Comparative study of performance of parallel Alpha Beta Pruning

for different architectures, 2019 IEEE 9th International Conference on Advanced Computing (IACC),

13-14 Dec, 2019.

11) Hyatt, R.M. (1988). A High-Performance Parallel Algorithm to Search Depth-First Game Trees. Ph.D.

Thesis, University of Alabama, Birmingham.

12) Hyatt, R.M. (1997). The Dynamic Tree-Splitting Parallel Search Algorithm. ICCA Journal, Vol. 20, No.

1, pp. 3 – 19.

13) Parallel Alpha-Beta Search on Shared Memory Multiprocessors by Valavan Manohararajah (Thesis)

14) Parallel Alpha-Beta Algorithm on the GPU Damjan Strnad and Nikola Guid Faculty of Electrical

Engineering and Computer Science, University of Maribor, Slovenia

https://pdfs.semanticscholar.org/8e1c/9f70aa4849475199e26ccd3e21c66%202e2d801.pdf
https://ieeexplore.ieee.org/xpl/conhome/8962270/proceeding

