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ABSTRACT: 

This paper implements formulations and 

algorithms of non-negative matrix factorization 

(NMF) for multichannel extensions. Herewe 

proposed multiple frequency model for the removal 

of background noise in the audio signals also we 

tried to analyze response of non-stationary signals. 

The performance of the proposed model is 

compared with the existing multiple frequency 

models using available datasets like babble, car, 

factory and train. Finally several real data are 

analyzed using both with MFCC HR- NMF and 

Without MFCC HR- NMF model. We use the usual 

traditional (LSEs) to compute parameters of the 

model during the execution and obtain the 

theoretical comparative good results also. 

 

INTRODUCTION: 

In the past twenty decadesnumber of 

researchers are trying to tackle the problem several 

stationary signals.Researchers are trying to implement a 

differentmodels toanalyze this problem. Several models 

like Moving Average (MA), Autoregressive (AR) or 

Autoregressive Moving Average (ARMA) are being used 

extensively for analyzing stationary signals. Analyzing 

non-stationary signals is the most challenging task. 

Two methods was proposed for implementationof  NMF 

bases modeling according to compute the better 

results.Single channelseparation is performed by the 

multichannel extensions of NMF with the ARMA  

mechanism.   Finally several real data are analyzed using 

the both with MFCC HR- NMF and Without MFCC HR- 

NMF model.Experimental results show that 1) good SNR 

Ratio, and 2) Removal of noise from the external sources 

with microphones were evaluated successfully. The 

advantage of this system model is that it is simple for a 

user to perform and typically easy to implement. 

 

OBJECTIVES: 

Estimation of a clean speech signal from a noisy 

recording is a typical signal estimation task. But due to 

the non-stationary of the speech and most of the 

practical noise signals, and also due to the importance of 

the problem, significant amount of research has been 

devoted to this challenging task. 

 Implementation of HR-NMF model. 

 Implementation of ARMA model. 

 

PROPOSED SYSTEM: 

 

Fig. No.1. Proposed System Model 

Our proposed method works allows end-users 

to listen the noise free sound, as shown in Fig. 1. The 

proposed noise reduction system uses MFCCs to obtain 

the filtered output. 
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 EXPERIMENTAL SETUP: 

We examined the proposed model for NMFwith 

real time dataset and existing database of speech.Setsof  

audio database  were generated.Convolution is done on 

the speech or wav file to compute the impulse responses. 

Execution of model and parameterestimation donein a 

real roomwhich contain a external.The impulse 

responses were measured bytraditional way of 

maximum length. We made major twosets of database. 

One is Real time and second is existing data in the 

format. This datasets then further categorized and 

evaluate with the MFCC and Without MFCC for the 

performance. Listed in Table I, which can be found with 

the existing records in the format tested with additive 

white Gaussian noise for MFCC. Comparison is shown 

with SNR response,MSE, PSNR and time. And Table II, 

which can be found without MFCC   for the existing 

records in the format tested with additive white 

Gaussian noise.Comparisonis shown with SNR 

response,MSE, PSNR and time. The algorithms were 

coded withMatlab and run on awindows processor. 

As like Table I and Table II evaluation of real 

time signals are shown  in  table III and Table IV.At the 

end  graph shows the comparative analysis  of all test of 

both signals. 

 

EXPERIMENTAL RESULTS: 

Following figures shows the different output 

result waveforms and the respective performance  

 

 
Fig. No.2.Output Signals from Noisy Input 

 

Fig.No.3. Output SignalsPerformance of Noisy Input 

 
Fig.No.4.Output  Signals AR estimation 

 
Fig.No. 5. Output Signals power spectrum 

 
Fig. No.6.MSE Response of Output Signal 

 
Fig.No. 7: Output Signal Cross-covarience 
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Table 1:Results with MFCC HRNMF for Existing File 

 

Table 2:Results without MFCC HRNMF for Existing File 

 

SIZE 

(Kb) 

PSNR 

(db) SNR(db) MSE TIME(sec) 

59.3 55.4 7.85 0.002 0.48 

50.3 48.76 9.58 0.004 0.45 

62.7 44.59 3.13 0.005 0.45 

66.4 47.96 7.63 0.007 0.35 

46.8 42.45 11.1 0.008 0.37 

47 50.68 6.15 0.004 0.4 

45 45.54 8.99 0.005 0.36 

 

 
Fig.No.6. Graph with MFCC HRNMF for Existing file 

 

 
 

Fig.No.9. Graph without MFCC HRNMF for Existing file 

 

Table 3: Comparative analysis between existing methods  

and proposed method 

 

 
Fig.No.9. Comparative analysis between existing 

methods and proposed method 

APPLICATIONS: 

This model is able to t resolve the 

computationalcomplexity. Gives the improved SNR and 

restore the file accurately. Due to this feature it can be 

applicable not only practice purpose but also in real 

word applications. Some of them are mention bellow. 

Applications of Noise Suppression in the general sense, 

noise suppression has applications in virtually all fields 

of communications. 

Applications in telephony, audio voice 

recording, and electronic voice communication. 

There are various applications of speech 

enhancement mobile communication located in a noisy 

environment, communications over internet, such as 

Skype or Google Talk. 
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SIZE(Kb) PSNR(db) SNR(db) MSE TIME(sec) 

59.3 51.48 7.76 0.001 0.76 

50.3 46.36 1.54 0.003 0.58 

62.7 44.57 1.76 0.005 0.73 

66.4 42.29 4.23 0.003 0.72 

46.8 41.52 5.05 0.007 0.56 

47 46.26 4.93 0.002 0.63 

45 45.08 7.18 0.005 0.46 

Existing  methods 

Proposed 

method 

Signal to noise ratio in (db) 

Noise 

type LMS 

NLM

S RLS NMF 

NMF

-PSC 

LMS-

PSC HRNMF 

Airport 5.4 6.34 8.3 6.4 10.5 11.8 35 

Babble 5.2 6 6.2 4.5 6.7 10.8 26.53 

Train 7.3 7.4 7 8 12 14.5 27.09 

Car _ _ _ _ _ _ 27.02 

Factory _ _ _ _ _ _ 24.81 

White 3.74 4.2 7.2 4.7 6 11 8.36 
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CONCLUSION: 

This dissertation investigated the application of NMF for 

the background noise removal. We derived and 

evaluated speech enhancement algorithms In different 

noise conditions from the results shown it can be 

interpreted that HRNMF model performs better as 

compared to other algorithms when used for noise 

reduction. It can also be concluded that MFCC HR-NMF 

with phase spectrum compensation performs better 

than simple HR-NMF. Therefore it is seen that the model 

improves the performance of the conventional methods 

and results in better  restored noisy signal. 
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