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ABSTRACT This research paper explains the record of scheduling operations in mechanized services above the last 100 
years. Understanding the traditions that production sequencing cum scheduling has been done is critical to 
analyze the existing production sequencing cum scheduling schemes and finding the traditions to get better 
them. The paper wraps not only the tools used to sustain decision-making in really existed world production 
arrangement although also made the changes in the production sequencing cum scheduling systems. The 
objective of the paper is to assist the production schedulers, production engineers and production 
researchers to recognize the true nature of production sequencing cum scheduling in active dynamic 
manufacturing systems and to persuade them to consider how production sequencing cum scheduling 
systems can be enhanced even supplementary. This section not only reviews the array of concepts and 
approaches used to get better production sequencing and scheduling although also demonstrate their 
timeless significance. 
 KEYWORDS: Scheduling operations, Production scheduling, Decision-making, Dynamic manufacturing 
systems, Computer-based scheduling 
 
SCHEDULING TRIBULATIONS IN INDUSTRIAL OPERATIONS The scheduling tribulations vary in industrial operations during production of a product as per demand, 
objective and utilization need of customers. The broadly scheduling tribulations in industrial operations can 
be classified as 

 Job Shop Scheduling.  
 Personnel Scheduling 
 Facilities Scheduling 
 Vehicle Scheduling and Routing 
 Project Management 
 Dynamic versus Static Scheduling 

 
THE HIERARCHY OF PRODUCTION DECISIONS The logical sequence of operations in factory planning corresponds to the following sequence 
 All planning initiates with the primary demand forecast.  
 Primary demand forecasts are the root for the top stage (aggregate) planning.  
 The Master Production Schedule (MPS) is the outcome of disaggregating aggregate plans from down to 

the individual item stage.  
 Based on the MPS, MRP is used to find out the size and timing of component and subassembly 

production of all products.                                                                      
 Meticulous shop floor schedules are requisite to meet the production plans ensuing from the MRP.  
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Figure 1: Chain of Command of Production Decisions 
 
SCHEDULING FUNCTIONS 
 
 Role of Scheduling  Allocation of (scarce) resources over time 
 Decision-Making process with a goal of optimizing one/more objectives.                                 
 

 Elements  Resources o Variety of Operational Machines in a Mechanical Workshop o Airstrips at an Airport o Squads at a Construction site o Central Processing Units in a Computer environment 
 

 Tasks o Production operations o Take-offs and landings o Construction stages 
o Computer programs 

 
 Objectives o Minimizing the completion time of the last performed task o Minimizing the number of tasks completed just after their respective due dates. 
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Figure 2: Information Flow Diagram of a Scheduling 
Function in an Enterprise 

Figure 3: Information Flow Diagram of a 
Scheduling Function in a Service Enterprise 

 
SCHEDULING FUNCTION IN AN ENTERPRISE Scheduling consists of 
 MRP (Materials Requirement/Resource Planning): The MRP tells us the capacities of products to 

produce in each instance bucket. However, MRP does not make any hypothesis regarding the resources 
(i.e. labour, raw materials, machines etc.) presently accessible in the factory. E.g. two different 
components have to be manufactured in the similar division. How headed for scheduling them? 

 ERP (Enterprise Resource Planning)  
These components compromise the combination of below terms from initial to final stage of production time 
with stipulated dispatch time for a customer: o Processing time (pij) o Release date (rj)  o Due date (dj) o Weight (wj) o Notations 

 α | β | γ 
 α Machine Environment  Single Machine (1 machine)  Identical machines in parallel (Pm)  Machines in parallel with different speeds (Qm)  Unrelated machines in parallel (Rm)  Flow shop (Fm) (m machines in series)  Flexible flow shop (FFc) (c stages with possible Identical machines)  Job shop (Jm) (recrc for recirculation in β field)  Flexible Job shop (FJc)  Open shop (Om) (scheduler can determine route) 
 β Processing characteristics and constraints  Release dates (rj)  Sequence dependent setup times (sjk)  
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 Machine specific sequence dependent setup times (sijk)   Premeptions (prmp)  Precedence constraints (prec)  Breakdowns (brkdwn)  Machine eligibility restrictions (Mj)  Premutation (prmu)  Blocking (block)  No-wait (nwt)  Recirculation (recrc) 
 γ Objectives  Makespan (Cmax)  Max lateness (Lmax); Lj = Cj - dj  Total weighted completion time (ΣwjCj)  Discounted total weighted completion time [Σwj(1-e-rCj)]  Total weighted tardiness (ΣwjTj)  Weighted numeral of tardy jobs (ΣwjUj)  Examples 
 Fm | pij = pj | ΣwjCj  

CLASSES OF SCHEDULES  Non-delay Schedule: A feasible schedule is known as non-delay if no machine is kept idle while an 
operation is waiting for processing (i.e. it prohibits the unforced idleness). 

 A scheduling anomaly: Consider a P2 | prec | Cmax with the following processing times: 
 Table 1: Processing Operational Times of a Schedule of Operations in a Production Shop 

j 1 2 3 4 5 6 7 8 9 10 
pj 8 7 7 2 3 2 2 8 8 15 

 
Characteristics of the Job Shop Scheduling Problem  Job Arrival Pattern 
 Numeral and Variety of Machines 
 Numeral and skill level of workers 
 Flow Patterns 
 Assessment of Alternative Regulations 

 
Objectives in Job Shop Scheduling  Meet due dates 
 Diminish work-in-process (WIP) inventory 
 Diminish average flow time 
 Capitalize machine/worker utilization 
 Diminish set-up times for changeovers 
 Diminish direct production and labor costs 
(Note: These objectives can be inconsistent which may generally vary as per real industrialization process) 
Terminology  Flow shop: n jobs processed through m machines in the identical succession and progression. 
 Job shop: the sequencing of jobs through machines may be diverse, and there may be numerous 

operations on several machines. 
 Parallel processing vs. sequential processing: parallel processing means to the operational machines 

are indistinguishable. 
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 Flow time of job i: Time elapsed from commencement of first job until the finishing point of job i. 
 Makespan: Flow process time of the job completed last.  
 Tardiness: The positive difference among the completion time and the due date. 
 Lateness: The difference (may be negative) among the completion time and due date.  
 
Common Sequencing Rules   FCFS (First Come First Served). Jobs processed in the array of they approach to the production shop. 
 SPT (Shortest Processing Time). Jobs which amid the shortest operational processing time period 

especially they are scheduled very first.  
 EDD (Earliest Due Date). Jobs are sequenced as per their pre-planned due dates. 
 CR (Critical Ratio). Determine the ratio of operational processing time of the job as well as the 

remaining proceeding time until their due date. Schedule the job amid the leading Critical Ratio worth 
subsequently. 

 
Optimal Sequencing & Scheduling Resolutions intended for a Single Operational Machine   The rule that diminishes the mean flow time of all proceeding jobs is SPT [1]. 
 The following criteria are equivalent:  
 Mean flow time 
 Mean waiting time. 
 Mean lateness 

 Lawler’s algorithm [2] diminishes the maximum flow time subject to precedence constraints.  
 Moore’s algorithm [3] diminishes the numeral of tardy jobs. 
 
Optimal Sequencing & Scheduling Resolutions intended for Multiple Operational Machines  The optimal resolution for scheduling n jobs on two machines is forever a permutation schedule (that is, 

jobs are done in the identical order on both machines). (This is the base for a Johnson’s algorithm.) 
 For three machines, a permutation schedule is still optimal if we restrict attention to total flow time only. 

Under rare circumstances, the two machine algorithm can be used to solve the three machine case.  
 When scheduling two jobs on m machines, the problem can be resolved by graphical means.  
 
Stochastic Scheduling: Static Case  Single machine case. Suppose that processing times are casual variables. If the objective is to diminish 

the average weighted flow time, jobs are sequenced according to anticipated weighted Shortest 
Processing Time. That is, if job times are t1, t2, . . ., and the particular weights are u1, u2, . . .  then job i 
leads job i+1 if  

E(ti) / ui < E(ti+1) / ui+1.  Multiple Machines. Entails the hypothesis that the allocation of job times is exponential, (memoryless 
possessions). Presume parallel operational processing of n jobs on two machines. Then the optimal 
sequence is headed for schedule the jobs as per primary operational preference related to their LEPT 
(Longest Expected Processing Time).  

 Johnson’s algorithm for scheduling n jobs on two machines in the deterministic case has a natural 
extension to the stochastic case as long as the job operational times are exponentially distributed.  

 
Stochastic Scheduling: Dynamic Analysis  When jobs arrive to the job shop with dynamism over time, queuing theory provides a means of 

analyzing the results. The standard M/M/1 queue applies to the case of purely random arrivals to a single 
machine for random operational processing times.  

 If the selection discipline does not depend on the flow times, the mean flow times are the same, but the 
variance of the flow times will differ.  

 If job times are realized while the job connects the queue rather than when the job goes into its desired 
service, Shortest Processing Time generally results in lowest expected flow time.  
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Single Operational Machine Deterministic Scheduling Models  Jobs:  J1, J2, ..., Jn   Suppositions: 
• The machine is forever accessible right through the scheduling period. 
• The machine cannot process more than one job at a time. 
• Each job must expend on the machine a prearranged length of time. 
 

Figure 4: Single Operational Machine Deterministic Scheduling Models 
 
Necessities that may obstruct the feasibility of an operational schedules: 
• precedence constraints 
• no preemptions 
• release dates 
• deadlines 
 
Whether few numerous feasible operational schedules exist?    NP hard 
 
Objective function f is used comparable evaluation of different operational schedules. 
f(S) < f(S') whenever operational schedule S is considered to be superior than S' problem of diminishing f(S) 
beyond the set of feasible operational schedules. 
 
Scheduling Models Related to an Objective 
A. Completion Time Models  

Contents  1. An algorithm which gives an optimal schedule with the minimum total weighted completion time, 1 
|| wjCj    
Theorem. The weighted shortest processing time first rule (WSPT) is optimal for  
1 || wjCj   

 
 
 
 
 
 
 
 
 
 
 

 
WSPT: jobs are prearranged in declining order of wj / pj  

The next follows inconsequentially: 
The problem 1 || Cj is resolved by a sequence S with jobs arranged in non declining array of operational 
processing times. 

Proof.  
By the mode of a contradiction. 
S is an operational schedule, irrespective of WSPT, which is optimal. 
j and k are two adjacent jobs such that  


 t

tJktS k
 at time processed is job no if0
 at time processed is  job if)(
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which implies that wj pk < wk pj   

 
 
 
 
 
 
 

S:  (t+pj) wj + (t+pj+pk) wk = t wj  +  pj wj  +  t wk  +   pj wk   +   pk wk  S’:  (t+pk) wk + (t+pk+pj) wj = t wk +  pk wk  +  t wj  +   pk wj   +   pj wj   
the completion time for S’ < completion time for S contradiction! 

 
2. An algorithm which gives an optimal operational schedule with the least overall weighted 

completion time when the jobs are subject to precedence relationship that take the form of chains, 1 | 
chain | wjCj  
chain 1:  1  2  ...   k 
chain 2:  k+1  k+2  ...   n 

 
Lemma.    If  


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the chain of jobs 1,...,k precedes the chain of jobs k+1,...,n. 
 
Let l* satisfy  

 
 
 
 
 
 
  factor of chain 1,...,k 

l* is the job that determines the  factor of the chain 
 

Lemma. If job l* determines  (1,...,k) , then there exists an optimal operational sequence that 
processes the jobs 1,...,l* one subsequent to another without disruption by jobs of commencing 
supplementary chains. 
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Algorithm  
Whenever the machine is free of operational charge, select the one with the highest  factor amongst 
the remaining operational chains. Process this selected chain upto together with the job l* that 
concludes its  factor.  

 
Example. 
chain 1:  1  2  3  4  
chain 2:  5  6  7 

 Table 2: Processing Operational Times of a Schedule of Operations in a Production Shop 
jobs 1 2 3 4  5 6 7 
wj 6 18 12 8  8 17 18 
pj 3 6 6 5  4 8 10 

  factor of chain 1 is determined by job 2: (6+18)/(3+6)=2.67  factor of chain 2 is determined by job 6: (8+17)/(4+8)=2.08 
chain 1 is selected: jobs 1, 2 

  factor of the remaining part of chain 1 is determined by job 3: 12/6=2  factor of chain 2 is determined by job 6: 2.08 
chain 2 is selected: jobs 5, 6 

  factor of the remaining part of chain 1 is determined by job 3: 2  factor of the remaining part of chain 2 is determined by job 7: 18/10=1.8 
chain 1 is selected: job 3 
  factor of the remaining part of chain 1 is determined by job 4: 8/5=1.6  factor of the remaining part of chain 2 is determined by job 7: 1.8 
chain 2 is selected: job 7 

 
job 4 is scheduled last 
 
the final schedule: 1, 2, 5, 6, 3, 7, 4 

 
1 | prec | wjCj  
* Polynomial time algorithms for the more complex precedence constraints than the simple chains 

are developed. 
* The scheduling problems with arbitrary precedence relation are NP hard. 
* 1 | rj, prmp | wjCj preemptive version of the WSPT rule does not always   

  lead to an optimal solution, the problem is NP hard 
* 1 | rj, prmp | Cj  preemptive version of the SPT rule is optimal 
* 1 | rj | Cj   is NP hard  

 Summary  
* 1 || wjCj     WSPT rule 
* 1 | chain | wjCj     a polynomial time algorithm is given 
* 1 | prec | wjCj  with arbitrary precedence relation is NP hard 
* 1 | rj, prmp | wjCj the problem is NP hard 
* 1 | rj, prmp | Cj  preemptive version of the SPT rule is optimal 
* 1 | rj | Cj   is NP hard  
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Due date related objectives: 
B. Lateness Models 

Contents  1. Lawler’s algorithm provides an optimal operational schedule with the least cost, hmax when the jobs 
are subject to precedence relationship, 1 | prec | hmax   Lawler’s Algorithm 
• Backward algorithm provides an optimal operational schedule for 1 | prec | hmax hmax = max (h1(C1), ... ,hn(Cn) ) hj are non declining cost functions 

 
Notation  
Makespan, Cmax =  pj   completion of operational process of the last job 
J set of jobs already scheduled as they have to be processed during the pre-allotted time 
interval  

 
 

JC complement of job set J, set of jobs still to be process scheduled 
J'  JC set of jobs that can be operational scheduled instantly previous to set J (schedulable jobs) 

 Lawler’s Algorithm for 1 | | hmax  Step 1. 
J =  
JC = {1,...,n} 
k = n 
 Step 2. 
Let j* be such that  

 
 
 

Place  j* in J in the k-th order position 
Delete j* from JC  
 Step 3. 
If JC =   then Stop 
else  k = k – 1 
go to Step 2 

 Example  
Table 3: Processing Operational Times of a Schedule of Operations in a Production Shop (no precedence 

relationships between jobs) 
jobs 1 2 3 

pj 2 3 5 
hj (Cj) 1 + C1 1.2C2 10 

 
J =   JC = {1, 2, 3} jobs at a standstill to be scheduled  
Cmax = 10 
h1(10) = 11 
h2(10) = 12 
h3(10) = 10  




 Jj
j CpC maxmax ,









 

 CCC Jj
jjJjJj

jj phph min*
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Job 3 is scheduled last and has to be processed in [5, 10]. 
 

J = {3}  JC = {1, 2} jobs at a standstill to be scheduled  
Cmax = 5 
h1(5) = 6  
h2(5) = 6  
Either job 1 or job 2 may be processed before job 3. 

 
Two schedules are optimal: 1, 2, 3   and   2, 1, 3 

 
Lawler’s Algorithm for 1 | prec | hmax  Step 1. 
J = ,   JC = {1,...,n} 
J' the set of all jobs with no successors 
k = n  
Step 2. 
Let j* be such that 

 
 
 

Place j* in J in the k-th order position  
Delete j* from JC  
Modify J’ to represent the set of jobs which can be scheduled instantaneously before set J. 
 
Step 3. 
If JC =   then Stop 
else  k = k - 1 

 go to Step 2 
 

Example  
What will happen in the previous example if the precedence 1  2 has to be taken into account? 
J =   
JC={1, 2, 3} at a standstill to be scheduled  
J'={2, 3} have no successors 
Cmax = 10 
h2(10) = 12 
h3(10) = 10  

 
J = {3}  
JC={1, 2} at a standstill to be scheduled  
J'={2} can be scheduled instantaneously before J  
Cmax = 5 
h2(5) = 6  

 
J = {3, 2}   JC={1}  J'={1}   
h1(2) = 3  
 
Optimal schedule: 1, 2, 3, 
hmax = 10   
Note: 
1 || Lmax is the special case of the 1 | prec | hmax  









 

 CC Jj
jjJjJj

jj phph '* min
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where hj = Cj - dj algorithm results in the schedule that orders jobs in increasing order of their due dates - earliest due 
date first rule (EDD) 

 1 | rj | Lmax  is NP hard, branch-and-bound is used 
 1 | rj , prec | Lmax similar branch-and-bound 
 

C. Branch-and-bound algorithm for the scheduling problems with the objective to minimise lateness, 
1 | rj | Lmax  • Search space can grow very large as the number of variables in the problem increases! 
• Branch-and-bound is a heuristic that works on the idea of successive partitioning of the search space. 

 
 
             
 
 
 
 

• We require several means for attaining a lower bound on the charge for any meticulous solution (the 
task is to diminish the operational cost of production of a product). 

Branch-and-bound algorithm  
 
 
 
 
 
 

 Step 1. 
Initialise P =  Si (conclude the partitions) 
Initialise fbound   
Step 2. Remove best partition Si from P  
Reduce or subdivide Si into Sij  Update fbound  
P = P  Sij  
For all SijP do 
if lower bound of f(Sij) > fbound then remove Sij from P  
 
Step 3.  
If here not termination conditions exist at that time go to Step 2 
 
• Branch-and-bound algorithm for 1 | rj | Lmax  * Solution space contains n! schedules (n is number of jobs). 

Total enumeration is not viable! 
 
 
 
 
 
 
 



NOVATEUR PUBLICATIONS           INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 7, ISSUE 5, May-2020 

345 | P a g e  

Branching rule:  
k-1 level, j1, ... , jk-1 are scheduled, 
jk need to be considered if no job at a standstill to be scheduled cannot be processed before the 
release time of jk  and that is: 
 

 
J set of jobs not yet scheduled 
t is time when jk-1 is completed 
 
Lower bound:  
• Preemptive earliest due date (EDD) rule is optimal for 1 | rj prmp | Lmax  A preemptive schedule will have an utmost lateness not superior than a non-preemptive schedule.

  
• If a preemptive EDD rule provides a non preemptive schedule then all nodes with a superior 

lower bound are able to be disregarded. 
 

Example 
Table 4: Processing Operational Times of a Schedule of Operations in a Production Shop 

jobs 1 2 
pj 4 5 
rj 3 0 
dj 4 6 

 
• Non-preemptive schedules  
 
 
 
 
 
 
• Preemptive schedule obtained using EDD  

 
 
  

 
EExample 

 
Table 5: Processing Operational Times of a Schedule of Operations in a Production Shop 

jobs 1 2 3 4 
pj 4 2 6 5 
rj 0 1 3 5 
dj 8 12 11 10 

 
 
 
 
 
 

)),(max(min ll
Jl

j prtr k 

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Summary  
* 1 | prec | hmax  , hmax=max( h1(C1), ... ,hn(Cn) ),  Lawler’s  algorithm 
* 1 || Lmax      EDD rule 
* 1 | rj | Lmax      is NP hard , branch-and-bound is   

     used 
* 1 | rj , prec | Lmax     similar branch-and-bound 
* 1 | rj, prmp | Lmax     preemptive EDD rule 

 
D. (i) Tardiness Models 

Contents  1. Moore’s algorithm which provides an optimal schedule with the least numeral of tardy jobs, 1 || Uj  
2. An algorithm which gives an optimal schedule with the least total tardiness, 1 || Tj   
Moore’s algorithm for 1 || Uj  Optimal schedule has this form  jd1,...,jdk,    meet their due dates EDD rule  

      jt1,...,jtl  do not meet their due dates  
Notation 
J set of jobs already scheduled 
JC  set of jobs still to be scheduled 
Jd  set of jobs already considered for scheduling, but which have been discarded  because 
they will not meet their due date in the optimal schedule  

 
Step 1. 
J =   
Jd =   
JC = {1,...,n} 

 Step 2. 
Let j* be such that 

 
Add j* to J   jJjj dd C min*
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Delete j* from JC 
 Step 3. 

If  
 
 

then go to Step 4.  
else let k* be such that  

 
 

Delete k* from J  
Add k* to Jd  

 Step 4. 
If Jd =  STOP 
else go to Step 2. 

 
Example 

Table 6: Processing Operational Times of a Schedule of Operations in a Production Shop 
jobs 1 2 3 4 5 

pj 7 8 4 6 6 
dj 9 17 18 19 21 

 
J =  , Jd =  , JC = {1,...,5} 
j*=1 J = {1} , Jd =  , JC = {2, 3, 4, 5}, t=7 < 9 = d1   
j*=2 J = {1, 2} , Jd =  , JC = {3, 4, 5}, t=15 < 17 = d2  
j*=3 J = {1, 2, 3} , Jd =  , JC = {4, 5}, t=19 > 18 = d3 k*=2 J = {1, 3} , Jd = {2}, t=11 
 
j*=4 J = {1, 3, 4} , Jd = {2},  JC = {5}, t=17 < 19 = d4   
j*=5 J = {1, 3, 4, 5} , Jd = {2},  JC = ,  t=23 > 21 = d5 k*=1 J = {3, 4, 5} , Jd = {2, 1}, t=16 < 21 = d5   
optimal schedule 3, 4, 5, 1, 2  Uj = 2  
 

(ii) The Total Tardiness  
1 || Tj  is NP hard 

 Lemma. If pj < pk and dj < dk then there exists an optimal sequential schedule in which job j is 
scheduled before job k. 

d1  ...  dn and pk = max(p1, ... , pn)  
 
 

 
Lemma. There exists an integer , 0      n-k such that there is an optimal operational schedule S 
in which job k is preceded by jobs j  k +  and followed by jobs  j > k +  . 
 

*jdp
Jj

j 
 jJjk pp  max*
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E. Sequence-Dependent Setup Problems  
Principle of Optimality (Bellman 1956 [4])  An optimal policy has the property that whatever the initial state and the initial decision are; the remaining 
decisions must constitute an optimal policy with regard to the state resulting from the first decision. 
 Algorithm Dynamic programming procedure: recursively the optimal solution for some job set J starting at 
time t is determined from the optimal solutions to sub problems defined by job subsets of S*S with start 
times t*t . 
J(j, l, k)   contains all the jobs in a set {j, j+1, ... , l} with processing time  pk  V( J(j, l, k) , t)  total tardiness of the subset under an optimal sequence if this subset   
 starts at time t 
 
Initial conditions:  
V(, t) = 0 
V( { j }, t ) = max (0, t + pj - dj)   
Recursive conditions:  

 
 
 
 
 
where k' is such that  pk' = max ( pj'  |  j'  J(j, l, k) ) 
 
Optimal value function is obtained for V ({ 1,...,n }, 0 ) 
 
Example  

Table 7: Processing Operational Times of a Schedule of Operations in a Production Shop 
jobs 1 2 3 4 5 

pj 121 79 147 82 130 
dj 260 266 266 336 337 

k' = 3,  0      2  
dk' = d3 = 266 











)560,(294)0),3,5,1((
)430),3,5,5((164)0),3,4,1((

)347),3,5,4((81)0),3,3,1((
min)0}),5,...,2,1({

VJV
JVJV

JVJV
V  

V( J(1, 3, 3) , 0) = 0 1, 2   C2 = 200 < 266 = d2 
     T1 + T2 = 0   
   2, 1   C1 = 200 < 260 = d1       T2 + T1 = 0  
 
C3(0) - d3 = 121 + 79 + 147 - 266 = 347 - 266 = 81 
 
V( J(4, 5, 3) , 347)  4, 5  T4 = 430 - 336 = 94 

)))(,)',,1'((
))(,0max(

),)',',(((min),),,((

'
'' 




k
kk

CklkJV
dC

tkkjJVtkljJV




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    T5 = 560 - 337 = 229 
     T4 + T4 = 317  
   5, 4  T5 = 477 - 337 = 140 
    T4 = 560 - 336 = 224 
     T5 + T4 = 364 
 
C3(1) - d3 = 347 + 83 - 266 = 430 - 266 = 164 
C3(2) - d3 = 430 + 130 - 266 = 560 - 266 = 294 
 
V( J(1, 4, 3) , 0) = 0  achieved with the sequence 1, 2, 4  and 2, 1, 4  
V( J(5, 5, 3) , 430) = 223  
V( J(1, 5, 3) , 0) = 76  achieved with the sequence 1, 2, 4, 5 and 2, 1, 4, 5  
V(  , 560) = 0 










370029476

2231640
317810

min)0},5,...,2,1({v   

Optimal sequences: 1, 2, 4, 5, 3 and 2, 1, 4, 5, 3  
 Summary  
* 1 || Uj    forward algorithm 
* 1 ||  wjUj   is NP hard 
* 1 || Tj  is NP hard, pseudo-polynomial algorithm based on dynamic programming 
 
Assembly Line Balancing The characteristics of the Assembly Line Balancing problem are:  
 A collection of n tasks must be completed on each item 
 Tasks are assigned to stations. Tasks must be sequenced properly, and certain tasks may not be 

completed at the same station.  
 The objective is to allocate tasks to stations to diminish the cycle time, C.  
 The general problem is complex to solve optimally, but effective heuristics are available (the text 

discusses one known as the ranked positional weight technique.) 
 
Schematic of a Typical Assembly Line  

 
 
 
 
 
 

Figure 4: Schematic of a typical assembly line 
 
CONCLUSION Since the severance that established production scheduling as a distinctive production management function, 
the huge changes in production scheduling are due to mainly two key events. The first is to recognize the 
complex relationships between men, machines, orders, and time. The second is the irresistible powers of 
information technology to collect, visualize, process, and share data quickly and easily, which has enhanced 
all types of decision-making processes. These actions have led, in most places, to the decline of shop 
foremen, who used to rule factories, to software systems as well as optimization algorithms for production 
scheduling. 



NOVATEUR PUBLICATIONS           INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: 2394-3696 VOLUME 7, ISSUE 5, May-2020 

350 | P a g e  

The shocking news is that many manufacturing firms have not taken benefits of these developments. They 
produce goods only to transport them to their customers, but the production sequencing and scheduling 
system is a broken down collected works of autonomous plans that are often ignored, periodic meetings 
wherever unreliable information is communal, expediters who jog from one calamity to another, and ad-hoc 
decisions made by peoples who cannot see the whole system. Production scheduling systems rely on human 
decision-makers and many of them need timely research guidance assistance. 
This overview of scheduling operations of production methods should be valuable to those just beginning 
their study of production planning and control. In addition, practitioners as well as researchers should use 
this information to consider what has been truly useful to improve the production scheduling practices in the 
real-world. 
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